2 resultados para Pheromones.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Pheromones are chemicals produced and detected by conspecifics to elicit social/sexual physiological and behavioral responses, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Two large superfamilies of G protein-coupled receptors, V1rs and V2rs, have been identified as pheromone receptors in vomeronasal sensory neurons. Based on a computational analysis of the mouse and rat genome sequences, we report the first global draft of the V2r gene repertoire, composed of similar to 200 genes and pseudogenes. Rodent V2rs are subject to rapid gene births/deaths and accelerated amino acid substitutions, likely reflecting the species-specific nature of pheromones. Vertebrate V2rs appear to have originated twice prior to the emergence of the VNO in ancestral tetrapods, explaining seemingly inconsistent observations among different V2rs. The identification of the entire V2r repertoire opens the door to genomic-level studies of the structure, function, and evolution of this diverse group of sensory receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.