37 resultados para Phenotypic Plasticity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Phenotypic plasticity widely exists in the external morphology of animals as well as the internal traits of organs. In the present study, we studied the gut length plasticity of planktivorous filter-feeding silver carp under different food resources in large-net cage experiments in Meiliang Bay of Lake Taihu in 2004 and 2005. There was a significant difference in stocking density between these 2 years. Under a low stocking density and abundant food resources, silver carp increased their energy intake by feeding on more zooplankton. Meanwhile, silver carp adjusted their gut length to match the digestive requirements of food when exposed to different food resources. In the main growth seasons (from April to October), silver carp significantly increased their relative gut length when feeding on more phytoplankton in 2005 (p < 0.01, 9.23 +/- 1.80 in 2004 and 10.77 +/- 2.05 in 2005, respectively). There was a nearly significant negative correlation between zooplankton proportion in the diet and the relative gut length when silver carp were stocked in a high density (p = 0.112). It appears that silver carp might have evolved plasticity to change their gut length rapidly to facilitate efficient utilization of food resources. Such resource polymorphisms in the gut may be a good indication of temporal adaptation to resource conditions. Our work provided field evidence for understanding the functional basis of resource polymorphisms and the evolution of phenotypic plasticity in planktivorous filter-feeding fish.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
时空异质性是生境的基本特征。几乎所有植物都是在一定尺度的时空异质性环境中完成其生活史的。在进化过程中,植物可能形成了各种有效利用环境异质性的生态适应对策。克隆生长使得克隆植物在理论上更容易适应于异质性环境。本文以匍匐茎和根状茎型草本为材料,应用实验生态学方法研究了游击型克隆植物对异质性环境的生态适应对策。 在沙丘生境(如毛乌素沙地)中,沙埋是植物常常遭遇的事件。由于沙埋在水平空间表现出非均匀性,克隆植物的基株或克隆片断常常经历局部沙埋。通过温室和野外实验,研究了克隆整合作用对鹅绒委陵菜和沙鞭沙埋分株忍受沙埋能力的影响。结果表明,克隆整合显著提高鹅绒委陵菜和沙鞭沙埋分株的存活。进一步的耗-益分析表明,克隆整合使鹅绒委陵菜沙埋分株显著受益,而对非沙埋分株却没有显著耗损,故整个克隆片断的生长得到显著提高。因此,克隆整合是沙丘生境中克隆植物对局部沙埋胁迫的生态适应对策之一。 通过2个温室实验,研究了金戴戴对光照、基质养分和盐分的克隆可塑性。结果表明:光照强度、基质养分和盐分对金戴戴克隆生长和克隆形态均有十分显著的影响。深度遮光、低养和高盐均显著削弱金戴戴的生长,其生物量、叶面积、分株数、匍匐茎长及叶柄长和根冠比对基质盐分的可塑性大小和格局显示出基株间的差异。在低养分条件下,金戴戴匍匐茎节间显著伸长,而分枝强度显著减弱。这些结果与克隆植物觅食模型相符合,表明当生长于异质性环境,金戴戴可凭借克隆可塑性实现的觅养行为来增加对养分资源的摄取。因此,克隆可塑性是克隆植物利用环境异质性的另一条途径。 在另一温室实验中,研究了三种匍匐茎克隆草本鹅绒委陵菜、金戴戴和绢毛匍匐委陵菜对光照和养分资源交互斑块性环境的反应。当置于高光低养下的分株与低光高养下的分株相连时,高光低养分株、低光高养分株以及克隆片断的生物量均得到显著提高。同时,低光高养下分株的根冠比相对增加,而高光低养下分株的根冠比相对下降。这表明,三种克隆植物发生了环境诱导的克隆内分工行为。这种环境诱导的克隆内分工行为有利于整个基株对资源交互斑块性环境的利用,是克隆植物对异质性环境的生态适应对策。
Resumo:
克隆植物同一基株的相连克隆分株或克隆片段常常生长在资源条件不同的斑块中,分株间形成克隆整合和克隆可塑性以及克隆分工等有效地获取必需资源的生态适应对策,提高在异质性斑块生境中的适合度,适应环境的异质性变化。但在以往的克隆植物生态学的理论研究中,为了研究的简化和方便,往往忽略了土壤中微生物的作用。丛枝菌根(Arbuscular mycorrhiza, AM)真菌是自然界中广泛存在的土壤微生物之一,可与大多数的高等植物形成共生菌根,影响植物的生长、发育及其在生态系统中的作用。 本文应用实验生态学方法,以蛇莓、狗牙根和白三叶为研究对象,在温室受控条件下,对异质养分斑块中的分株对接种AM真菌,探讨AM真菌对资源斑块中克隆植物的影响。 第一个实验设计单一磷养分斑块,以蛇莓(Duchesnea indica)和摩西球囊霉(Glomus mosseae)为研究对象,探讨丛枝AM真菌对克隆整合的影响。将蛇莓相连的两个分株,即分株对,分别种植在两个隔离的花盆中,各施以高磷和低磷营养液,保持或切断分株间匍匐茎连接,即间隔子,再将菌剂接种到低磷斑块中分株。结果发现间隔子状态和接菌处理都显著影响低磷斑块中蛇莓分株的根系生物量分配。对照处理中保持间隔子连接显著减少低磷斑块中分株生物量向根系的分配,接菌后这一差异显著减小。保持间隔子连接或接菌对高磷斑块中分株的根系生物量分配不显著。保持间隔子连接和接菌都显著增加低磷斑块分株的生物量在分株对生物量中所占比例,二者无显著交互作用。 第二个实验设计光照和养分斑块,以狗牙根(Cynodon dactylon)和摩西球囊霉为研究对象,探讨AM真菌对克隆植物非局域反应的影响。将狗牙根分株对的两个分株分别种植在两个花盆中,各施以光照强度与土壤养分交互斑块性环境条件,形成高养低光和高光低养斑块,保持或切断间隔子,再将菌剂接种到目标分株。结果发现对照处理中,间隔子状态显著影响分株的局域反应。高养斑块中保持间隔子连接的分株的根长显著大于间隔子断裂的分株的根长,高光斑块中保持间隔子连接的分株的根长显著小于间隔子断裂的分株的根长。高光斑块中保持间隔子连接的分株的叶面积显著大于间隔子断裂的分株的叶面积,间隔子状态对低光高养斑块分株的叶面积无显著影响。在低光高养斑块中,相对于间隔子断裂的分株,间隔子连接的分株将更多的生物量分配到根系,而在高光斑块中的分株则相反。这些都说明,无AM真菌侵染的情况下,狗牙根分株对的两个分株在实验中各自形成的克隆部分的分株形态反应都受到了克隆整合的作用,表现为非局域反应。接种AM真菌后,高光斑块中分株的根长和高养斑块中分株的叶面积在间隔子连接和断裂处理之间的差异显著减小。生物量分配的差异不受接菌的影响。对照处理中,高养斑块中间隔子连接的分株生物量和分株数显著高于间隔子断裂的分株,但高光斑块中分株之间无显著差异。接种AM真菌显著降低高养斑块中分株的生物量和分株数,对高光斑块中分株无显著影响。 第三个实验设计光照和养分交互斑块,以白三叶(Trifolium repens)和多种AM真菌为研究对象,探讨AM真菌及其多样性对克隆分工的影响。将间隔子连接(整合)或断裂(无整合)的白三叶分株对种植于光照强度和土壤养分交互斑块性资源条件下(即,高光低养和低光高养),向分株对接种灭菌处理、单种或五种AM真菌的菌剂。结果发现,对照处理中,间隔子连接的分株对在光养交互斑块中与间隔子断裂的分株对相比较表现出克隆分工,即高光低养斑块中的分株的根系生物量分配增加,低光高养斑块中的分株的根系生物量分配减少。单菌处理没有影响对照处理中间隔子状态对分株对生物量分配的改变;多菌处理显著减小对照中生物量分配的改变;与单菌处理比较,多菌处理能显著减小生物量分配的改变。在高光低养斑块中,多菌处理显著抑制间隔子断裂分株的根生物量分配的增加。在低光高养斑块中,多菌处理完全抑制在对照处理中间隔子连接的分株的根生物量分配的增加。在对照处理中,间隔子连接分株的单叶面积、总叶面积、叶柄长、根长都与生物量分配趋势一致,表现出对丰富资源的特化。接菌处理能显著抑制这些形态指标的改变。多菌处理显著抑制这些指标的特化,并且抑制效果显著强于单菌处理。间隔子状态和AM真菌处理显著增加高光低养、低光高养斑块中分株及整个克隆片段的生物量和分株数。多菌处理抑制间隔子连接的克隆片段生物量和分株数增加。克隆片段的生物量和分株数在对照和单菌处理间无显著差异,在多菌处理中显著高于在单菌处理中。 以上三个实验说明,(1)AM真菌对克隆植物生长的影响与非克隆植物一样,受到植物种类和环境资源水平的影响;(2)AM真菌对异质性资源环境中克隆植物的影响由于植物不同而产生不同的效应;(3)提高AM真菌的多样性可能增强菌根对克隆植物的作用。 这些研究结果揭示出AM真菌与异质性环境中克隆植物整合作用、非局域反应和克隆分工作用的交互影响,表明克隆生长在生态系统中的重要性可由生物和非生物因素共同决定。
Resumo:
In order to examine the role of environmental factors affecting foliar morphology, we performed a case study of leaf morphological variation of Ranunculus natans found in the arid zone of northwest China. We found that foliar phenotypic variation differed significantly between populations. We described substantial positive correlations between altitude and leaf area (LA) as well as leaf perimeter (LP), and also between longitude and number of teeth, along with dissection index (DI). The pH, conductivity, and salinity of the environment caused a significant decrease in both LA and LP. Ranked in terms of their impacts on leaf morphology, the six selected factors were: altitude > pH > conductivity > salinity > longitude > latitude. We found that foliar morphological variations are functional responses to water-quantity factors (e.g., altitude and longitude at regional scales) and water-availability relation factors (e.g., pH, conductivity, and salinity at local scales), rather than to temperature-relation factors (latitude). Therefore, altitude and longitude, along with pH, conductivity, and salinity, are the main factors that significantly influence foliar morphology in the arid zone of China. We found that main factors played major roles in plant phenotypic plasticity in a complex ecosystem, although different combinations and interactions of environmental and geographical factors in each local environment may obscure the general trends in trait changes along environmental gradients.
Resumo:
在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.
Resumo:
小鲵属为亚洲特有的有尾两栖类,是小鲵科之模式属。现记载小鲵属动物有29种,占全科物种数一半以上(Frost, 2007),为小鲵科第一大属。该属分布跨越古北界和东洋界,分布于中国、朝鲜、韩国、日本等地区,其系统学研究一直以来颇为中外学者所关注。澄清该属的物种分类问题,阐明其种间的系统发育关系对整个小鲵科的系统演化与分布格局关系的研究具有关键性意义。 本论文以中国及周边地区的小鲵属物种为主要对象,主要利用分子生物学实验与生物信息学途径相结合的手段,运用支序系统学与分子进化生物学理论及分析方法,展开系统发育的研究。在此基础上诠释现存的分类问题,并探讨该属系统发育关系。 研究材料上,本研究采用野外采集与网络下载数据相结合的方法,获取了较为全面的小鲵属物种DNA序列资料。技术手段上,选取了线粒体DNA的Cytb、12S、16S、NADH 2、COI等多个基因部分片段序列,对小鲵属开展了较为全面系统的研究。分析方法上,针对小鲵属物种各类群的具体情况,运用了处于领域前沿的多种分析方法。应用PAUP、MrBayes、Modeltest、Mega等软件,采用了最大简约法(MP)、邻接法(NJ)、贝叶斯推断(BI)及K2P遗传距离分析等方法。 本研究对小鲵属进行了较为全面的系统发育研究,弥补了有关小鲵属系统发育研究的不足,并得出了以下结果: (1)关于豫南小鲵Hynobius yunanicus的有效性,基于细胞色素b序列的系统发育关系联合形态和染色体组型等证据证明了豫南小鲵是商城肥鲵的同物异名。 (2)获得了较为全面的小鲵属物种系统发育树,并以此解释了北海道滞育小鲵、东北小鲵、中国小鲵与义乌小鲵等存在的分类问题。 (3)本研究利用DNA条形码技术对小鲵属及小鲵科物种进行了鉴定,再次证明豫南小鲵为商城肥鲵的同物异名;并认为猫儿山小鲵与挂榜山小鲵为同物异名。 综上,本研究较为完整地勾勒了小鲵属的系统发育关系全貌,并对小鲵属物种的起源进行了推测。 Hynobius, the type genus of the Family Hynobiidae, is the only exclusively Asian salamander genus. This genus which contains 29 species (beyond half of total Family), is the key group in Hynobiidae. The genus distributed across Palaearctic and Oriental Realm, and was found in China, Korea, and Japan. Systematics of genus Hynobius draws attention of researchers all the times. Resolving the taxonomic and phynogenetic questions of Hynobius is very important to the evolutionary research of Family Hynobiidae. Firstly, studies on systematics of genus Hynobius based on morphology, karyotype and molecular phylogeny of Hynobius are reviewed along with existing questions of this genus. The sequential reaserch project of phylogenetics is perspectively outlined. Using molecular data, we compared Hynobius yunanicus with a sympatric species Pachyhynobius shangchengensis. Our cytb sequences associating with karyotypic and morphological data supportted that H. yunanicus is not a valid species, but a synonym of P. shangchengensis. Because of phenotypic plasticity, some morphological characters are not even suitable for identifying hynobiids. The taxonomy of hynobiids is still controversial to a certain extent (Zhao et al. 1993; Fei, 1999; Chen et al. 2001; Zeng et al. 2006) and needs to be resolved by a new method. Here we examined the utility of COI barcoding for the discrimination of hynobiids. Meantime, the taxonomy of this Family was looked-over again. Our result show that the DNA Barcoding based on COI is easier and more rapidly than classic methods. And the DNA Barcodes data supported the actual taxonomy of Hynobiidae. Based on the achievements of our research, the phylogeny of Hynobius was reconstructed including some new species (H. maoershanensis, H. guabangshanensis, etc). Besides the phylogenetics of Hynobius was outlined, some questions and the hypothesis about the origin of genus Hynobius was put out.
Resumo:
A composite material containing uniformly distributed micrometer-sized Nb particles in a Zr-based amorphous matrix was prepared by suction cast. The resulting material exhibits high fractured strength over 1550 MPa and enhanced plastic strain of about 29.7% before failure in uniaxial compression test at room temperature. Studies of the serrations on the stress-strain curves and the shear bands on the fractured samples reveal that the amplitude of the stress drop of each serration step corresponds to the extent of the propagation of a single shear band through the materials. The composite exhibits more serration steps and smaller amplitude of stress drop due to the pinning of shear band propagation by ductile Nb particles.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.
Resumo:
Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.
Resumo:
Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.
Resumo:
Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics.
Resumo:
Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.