110 resultados para Phenol

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phenol-degrading. microorganism, Alcaligenes faecalis, was used to study the substrate interactions during cell growth on phenol and m-cresol dual substrates. Both phenol and m-cresol could be utilized by the bacteria as,the sole carbon and energy sources. When cells grew on the mixture of phenol and m-cresol, strong substrate interactions were observed. m-Cresol inhibited the degradation of phenol, on the other hand, phenol also inhibited the utilization of m-cresol, the overall cell growth rate was the co-action of phenol and m-cresol. In addition, the cell growth and substrate degradation kinetics of phenol, m-cresol as single and mixed substrates for A. faecalis in batch cultures were also investigated over a wide range of initial phenol concentrations (10-1400 mg L-1) and initial m-cresol concentrations (5-200 mg L-1). The single-substrate kinetics was described well using the Haldane-type kinetic models, with model constants of it mu(m1) = 0.15 h(-1), K-S1 = 2.22 mg L-1 and K-i1 = 245.37 mg L-1 for cell growth on phenol and mu(m2) = 0.0782 h(-1), K-S2 = 1.30 mg L-1 and K-i2 = 71.77 mgL(-1), K-i2' = 5480 (mg L-1)(2) for cell growth on m-cresol. Proposed cell growth kinetic model was used to characterize the substrates interactions in the dual substrates system, the obtained parameters representing interactions between phenol and m-cresol were, K = 1.8 x 10(-6), M = 5.5 x 10(-5), Q = 6.7 x 10(-4). The results received in the experiments demonstrated that these models adequately described the dynamic behaviors of phenol and m-cresol as single and mixed substrates by the strain of A. faecalis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst of Rh nanoparticles supported on a carbon nanofiber, 5 wt.% Rh/CNF, with an average size of 2-3 nm has been prepared by a method of incipient wetness impregnation. The catalyst presented a high activity in the ring hydrogenation of phenol in a medium of supercritical CO2 (scCO(2)) at a low temperature of 323 K. The presence of compressed CO2 retards hydrogenation of cyclohexanone to cyclohexanol under the reaction conditions used, and this is beneficial for the formation of cyclohexanone, increasing the selectivity to cyclohexanone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sulphonated phenol novolac (PNBS) which was used as a curing agent of epoxy was synthesised from phenol novolac (PN) and 1,4-butane sultone and confirmed by FTIR and H-1 NMR. The degree of sulphonation (DS) in PNBS was calculated by H-1 NMR. The semi-IPN membranes composed of sulphonated tetramethyl poly(ether ether ketone) (STMPEEK) (the value of ion exchange capacity is 2.01 meq g(-1)), epoxy (TMBP) and PNBS were successfully prepared. The semi-IPN membranes showed high thermal properties which were measured by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) With the introduction of the corss-linked TMBP/PNBS, the mechanical properties, dimensional stability, methanol resistance and oxidative stability of the membranes were improve in comparison to the pristine STMPEEK membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are used as templates to synthesize regioselective polymers from enzymatic polymerization of phenol in water. About 90% of total polymeric units in the obtained polymers are the highly thermally stable oxyphenylene units. The polymer-yields are dependent on the quantities of CNTs used. On the basis of MWNT-templated enzymatic polymerization of phenol, covalent attachment of polyphenol chains to the surface of MWNT by way of a linking molecule, hydroquinone, is achieved. This approach supplies a novel way for producing high-performance polymers and for functionalization of the surface of CNT.