104 resultados para Penrose limit and pp-wave background
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.
Resumo:
In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mmx42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns.The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 mu m. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Resumo:
An optical diagnostic system consisting of Michelson interferometer with image processor has been developed for study of the kinetics of thermal capillary convection and buoyancy convection. This optical interferometer has been used to observe and measure surface deformation and surface wave of capillary convection and buoyancy convection in a rectangular cavity with different temperature’s sidewalls. Fourier transformation is used to image processing. The quantitative results of surface deformation and surface wave have been calculated from the interference fringe pattern. With the increasing of temperature gradient, the liquid surface slant gradually. It’s deformation has been calculated, which is related directly with temperature gradient. This is one of the characters introducing convection. Another interesting phenomenon is the inclining direction, which is different when the liquid layer is thin or thick. When the liquid layer is thin, convection is mainly controlled by thermocapillary effect. However, When the liquid layer is thick, convection is mainly controlled by buoyancy effect. Surface deformation in the present experiment are more and more declining in this process. The present experiment proved that surface deformation appears before the appearance of surface wave on fluid convection, it is related with temperature gradient, and the height of liquid layer, and lies on capillary convection and buoyancy convection. The present experiment also demonstrates that the amplitude of surface wave of thermocapillary-buoyancy convection is much smaller than surface deformation, the wave is covered by deformation.
Resumo:
The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.
Resumo:
This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.
Resumo:
National Science Foundation of China (No. 10032040 and No. 49874013) and Joint Earthquake Science Foundation of China (No. 101119).
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.
Resumo:
The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in d
Resumo:
In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/IrxGa1-xSb type II superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger.
Resumo:
A novel path of preparing PP/o-MMT nanocomposites, which pay attention to the breaking up of MMT original agglomerates and dispersing of its primary particles, rather than the intercalation or exfoliation degree of o-MMT, was reported. The method of predispersing the o-MMT particles into a polar poly(vinyl alcohol) (PVA) matrix and then melt blending the pre-treated PVA/o-MMT hybrids with PP was studied. 3-isopropenyl-alpha,alpha-dimethylbenzene-isocyanate (TMI) was used as a modifier of PVA to improve the compatibility between PVA and PP matrix. Pre-disperse o-MMT with TMI modified PVA was proved to be an effective way to get a composite with fine o-MMT particles dispersion. But the method, which is pre-dispersing o-MMT with non modified PVA and then using TMI to modify such PVA/o-MMT hybrid, would largely reduce the reaction degree between TMI and PVA because of the relatively lower reaction temperature. Although the latter method also can obtain finer dispersion composites than that with using PP-g-MAH as compatibilizer, the relatively higher degradation degree of PP matrix in this method will limit the use of this nanocomposite.