5 resultados para Penny Dreadful
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.
Resumo:
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.
Resumo:
This paper presents the mode I stress intensity factors for functionally graded solid cylinders with an embedded penny-shaped crack or an external circumferential crack. The solid cylinders are assumed under remote uniform tension. The multiple isoparametric finite element method is used. Various types of functionally graded materials and different gradient compositions for each type are investigated. The results show that the material property distribution has a quite considerable in influence on the stress intensity factors. The influence for embedded cracks is quite different from that for external cracks.
Resumo:
In the present paper, the crack identification problems are investigated. This kind of problems belong to the scope of inverse problems and are usually ill-posed on their solutions. The paper includes two parts: (1) Based on the dynamic BIEM and the optimization method and using the measured dynamic information on outer boundary, the identification of crack in a finite domain is investigated and a method for choosing the high sensitive frequency region is proposed successfully to improve the precision. (2) Based on 3-D static BIEM and hypersingular integral equation theory, the penny crack identification in a finite body is reduced to an optimization problem. The investigation gives us some initial understanding on the 3-D inverse problems.