61 resultados para Pathogenic SHIV
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pathogenic conformational conversion is a general causation of many disease, such as transmissible spon- giform encephalopathy (TSE) caused by misfolding of prion, sickle cell anemia, and etc. In such structural changes, misfolding occurs in regions important for the stability of native structure firstly. This destabi- lizes the normal conformation and leads to subsequent errors in folding pathway. Sites involved in the first stage can be deemed switch regions of the protein, and are vital for conformational conversion. Namely it could be a switch of disease at residue level. Here we report an algorithm that can identify such sites computationally with an accuracy of 93%, by calculating the probability of the native structure of a short segment jumping to a mistake one. Knowledge of such switch sites could be used to target clinical therapy, study physiological and pathologic mechanism of protein, and etc.
Resumo:
Many diseases are believed to be related to abnormal protein folding. In the first step of such pathogenic structural changes, misfolding occurs in regions important for the stability of the native structure. This destabilizes the normal protein conformation, while exposing the previously hidden aggregation-prone regions, leading to subsequent errors in the folding pathway. Sites involved in this first stage can be deemed switch regions of the protein, and can represent perfect binding targets for drugs to block the abnormal folding pathway and prevent pathogenic conformational changes. In this study, a prediction algorithm for the switch regions responsible for the start of pathogenic structural changes is introduced. With an accuracy of 94%, this algorithm can successfully find short segments covering sites significant in triggering conformational diseases (CDs) and is the first that can predict switch regions for various CDs. To illustrate its effectiveness in dealing with urgent public health problems, the reason of the increased pathogenicity of H5N1 influenza virus is analyzed; the mechanisms of the pandemic swine-origin 2009 A(H1N1) influenza virus in overcoming species barriers and in infecting large number of potential patients are also suggested. It is shown that the algorithm is a potential tool useful in the study of the pathology of CDs because: (1) it can identify the origin of pathogenic structural conversion with high sensitivity and specificity, and (2) it provides an ideal target for clinical treatment.
Resumo:
In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originall
Resumo:
Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for evaluating the pathogenic role of specific mtDNA mutations but also for performing reliable association studies between mtDNA haplogroups and complex disorder
Resumo:
An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.
Resumo:
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain
Resumo:
Edwardsiella tarda is a bacterial pathogen that can infect both humans and animals. TX1, an Ed. tarda strain isolated from diseased fish, was found to produce autoinducer 2 (Al-2)-like activity that was growth phase dependent and modulated by growth conditions. The gene coding for the Al-2 synthase was cloned from TX1 and designated luxS(Et). LuxS(Et) was able to complement the Al-2 mutant phenotype of Escherichia coli strain DH5 alpha. Expression Of luxS(Et) correlated with Al-2 activity and was increased by glucose and decreased by elevated temperature. The effect of glucose was shown to be mediated through the cAMP-CRP complex, which repressed luxS(Et) expression. Overexpression of luxS(Et) enhanced Al-2 activity in TX1, whereas disruption of luxS(Et) expression by antisense RNA interference (i) reduced the level of Al-2 activity, (ii) impaired bacterial growth under various conditions, (iii) weakened the expression of genes associated with the type III secretion system and biofilm formation, and (iv) attenuated bacterial virulence. Addition of exogenous Al-2 was able to complement the deficiencies in the expression of TTSS genes and biofilm production but failed to rescue the growth defects. Our results (i) demonstrated that the Al-2 activity in TX1 is controlled at least in part at the level of luxS(Et) expression, which in turn is regulated by growth conditions, and that the temporal expression of luxS(Et) is essential for optimal bacterial infection and survival; and (ii) suggested the existence in Ed. tarda of a LuxS/Al-2-mediated signal transduction pathway that regulates the production of virulence-associated elements.
Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain
Resumo:
Edwardsiella tarda is a bacterial pathogen that can infect both humans and animals. TX1, an Ed. tarda strain isolated from diseased fish, was found to produce autoinducer 2 (Al-2)-like activity that was growth phase dependent and modulated by growth conditions. The gene coding for the Al-2 synthase was cloned from TX1 and designated luxS(Et). LuxS(Et) was able to complement the Al-2 mutant phenotype of Escherichia coli strain DH5 alpha. Expression Of luxS(Et) correlated with Al-2 activity and was increased by glucose and decreased by elevated temperature. The effect of glucose was shown to be mediated through the cAMP-CRP complex, which repressed luxS(Et) expression. Overexpression of luxS(Et) enhanced Al-2 activity in TX1, whereas disruption of luxS(Et) expression by antisense RNA interference (i) reduced the level of Al-2 activity, (ii) impaired bacterial growth under various conditions, (iii) weakened the expression of genes associated with the type III secretion system and biofilm formation, and (iv) attenuated bacterial virulence. Addition of exogenous Al-2 was able to complement the deficiencies in the expression of TTSS genes and biofilm production but failed to rescue the growth defects. Our results (i) demonstrated that the Al-2 activity in TX1 is controlled at least in part at the level of luxS(Et) expression, which in turn is regulated by growth conditions, and that the temporal expression of luxS(Et) is essential for optimal bacterial infection and survival; and (ii) suggested the existence in Ed. tarda of a LuxS/Al-2-mediated signal transduction pathway that regulates the production of virulence-associated elements.
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Vibrio anguillarum is a common bacterial pathogen in fish. However, little is known about its pathogenic mechanism, in part, because the entire genome has not been completely sequenced. We constructed a fosmid library for V. anguillarum containing 960 clones with an average insert size of 37.7 kb and 8.6-fold genome coverage. We characterized the library by end-sequencing 50 randomly selected clones. This generated 93 sequences with a total length of 57 485 by covering 1.4% of the whole genome. Of these sequences, 58 (62.4%) were homologous to known genes, 30 (32.3%) were genes with hypothetical functions, and the remaining 5 (5.3%) were unknown genes. We demonstrated the utility of this library by PCR screening of 10 genes. This resulted in an average of 6.2 fosmid clones per screening. This fosmid library offers a new tool for gene screening and cloning of V. anguillarum, and for comparative genomic studies among Vibrio species.
Resumo:
Edwardsielia tarda is one of the leading marine pathogens that can infect a wide range of cultured marine species. In this study, the acrR-acrAB cluster was cloned from TX1, a pathogenic E. tarda strain isolated from diseased fish. AcrR and AcrAB were found to be involved in resistance against acriflavine and methyl viologen, which positively regulate the expression of acrAB. AcrR negatively regulates its own expression and the expression of the acrAB operon, most likely by interacting with a 24-bp operator site that overlaps the putative promoter of acrA (PacrA). The repressive effect of AcrR on PacrA could be relieved by acriflavine, methyl viologen, and ethidium bromide, the presence of each of which enhanced transcription from PacrA. Interruption of the regulated expression of acrR by introducing into TX1 a plasmid that overexpresses acrR affected growth under stress conditions, AI-2 production, and bacterial virulence. In addition, mutational analyses identified a constitutively active AcrR mutant (named N215), which exhibits full repressor activity but is impaired in its ability to interact with the inducer. Overexpression of N215 produced the same kind of but moderately stronger effect on TX1 compared to that produced by overexpression of the wild-type acrR.