8 resultados para Passerine birds

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured the stable carbon isotope ratios for muscle of the upland buzzards (Buteo hemilasius), plateau pika (Ochotoma curzoniae), root vole (Microtus oeconomus), plateau zokor (Myospalax fontanierii) and passerine bird species at the Haibei Alpine Meadow Ecosystem Research Station (HAMERS), and provided diet information of upland buzzards with the measurement of stable carbon isotopes in tissues of these consumers. The results showed that δ~(13)C values of small mammals and passerine bird species ranged from -25.57‰ to -25.78‰ (n = 12), and from -24.81‰ to -22.51% (n = 43), respectively, δ~(13)C values of the upland buzzards ranged from -22.60‰ to -23.10‰ when food was not available. The difference in δ~(13)C values (2.88‰±0.31‰) between upland buzzards and small mammals was much larger than the differences reported previously, 1‰-2‰, and showed significant difference, while 1.31‰±0.34‰ between upland buzzard and passerine bird species did not differ from the previously reported trophic fractionation difference of 1‰-2‰. Estimation of trophic position indicated that upland buzzards stand at trophic position 4.23, far from that of small mammals, i.e., upland buzzards scarcely captured small mammals as food at the duration of food shortage. According to isotope mass balance model, small mammals contributed 7.89% to 35.04% of carbon to the food source of the upland buzzards, while passerine bird species contributed 64.96% to 92.11%. Upland buzzards turned to passerine bird species as food during times of shortage of small mammals. δ~(13)C value, a useful indicator of diet, indicates that the upland buzzards feed mainly on passerine bird species rather than small mammals due to "you are what you eat" when small mammal preys are becoming scarce.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured the stable carbon and nitrogen isotope ratios for muscles of the upland buzzards (Buteo hemilasius) and their potential food sources, plateau pikas (Ochotona curzoniae), Qinghai voles (Lasiopodomys fuscus), plateau zokors (Myospalax fontanierii), and several passerine bird species at the alpine meadow in Maduo county, Guoluo prefecture of Qinghai province, People's Republic of China, to provide diet information of upland buzzards, highlighting different diet composition of upland buzzards exposed to different locations. The results demonstrated that stable carbon isotope ratios of upland buzzards, passerine birds, plateau pikas, plateau zokors, and Qinghai voles were -24.42 +/- 0.25parts per thousand, -22.89 +/- 1.48parts per thousand, -25.30 +/- 1.47parts per thousand, -25.78 +/- 0.22parts per thousand, and -25.41 +/- 0.01parts per thousand, respectively, and stable nitrogen isotope ratios were 7.89 +/- 0.38parts per thousand, 8.37 +/- 2.05parts per thousand, 5.83 +/- 1.10parts per thousand, 5.23 +/- 0.34parts per thousand, and 8.86 +/- 0.06parts per thousand, respectively. Fractionation of stable carbon and nitrogen isotope ratios between upland buzzards and their food were 1.03parts per thousand and 2.11parts per thousand, respectively. Based on mass balance principle of stable isotopes and the Euclidean distance mixing model, upland buzzards depended mainly on plateau pikas as food (74.56%). Plateau zokors, Qinghai voles, and passerine birds only contributed a small proportion (25.44%) to diets of upland buzzards. The results were closely accordant with analyses of stomach contents and food pellets, which firmly supported the feasibility of using stable carbon and nitrogen isotope ratios to investigate diet information of upland buzzards. Another study based on stable carbon isotopes showed that upland buzzards living in the Haibei prefecture (another prefecture located in the southeast Qinghai province) mainly preyed on passerine birds (64.96% or more) as food supply. We were alarmed by the preliminary results that widespread poisoning activities of small mammals could reshape the food composition of upland buzzards, influencing the stability and sustainability of the alpine meadow. Bio-control on rodent pests should be carried out rather than the chemical measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greatest concentration of Chinese Galliformes occurs in the Trans-Himalayas. We selected 4 northwestern Yunnan counties (Lijiang, Shangri-la, Deqin, and Weixi) in the Trans-Himalayas to assess the conservation status of 9 gallinaceous forest birds. We

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study monitored 10-year-old fish and piscivorous birds from sites contaminated for many Stars. The data reflected the results of actual, long-term environmental exposures, The results demonstrate that different tissues of fish have quite different concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), The concentration order of PCDD/F within fish is liver congruent to egg congruent to intestines kidney congruent to hearts gill congruent to bladders > muscle > brain. The concentration order of PCDD/F within piscivorous birds was livers egg congruent to hearts muscle congruent to stomachs brain, The results obtained also demonstrate that the accumulation patterns of piscivorous birds and fish are quite different. The tissues of fish and piscivorous birds have different capacities for bioaccumulation and biotransformation of PCDD/F; variable proportions of TEQs were also found throughout their bodies. In fish, toxic equivalency quotient (TEQ): PCDD/F ratios in various tissues ranged from 0.01 to 0.07, whereas in birds the ratios ranged from 0.07 to 0.43. If the concentrations are normalized with lipid content, the results vary less. The effect of different lipid properties is obvious in the case of brain tissue, which is richer in phospholipids. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the Qinghai-Tibet plateau increased livestock numbers have resulted in degradation of the grasslands with potential impacts on native biodiversity. Concurrently, perceived increases in populations of native small mammals such as plateau pikas (Ochotona curzoniae) have led to poisoning programs, with uncertain impacts on species such as ground-nesting birds. We explored the relationships between the local seasonal abundance of small birds and (1) the density of pika burrows; (2) livestock grazing practices; and (3) local poisoning of pikas. Around Naqu prefecture, central Tibet, we used a nested experimental design to collect data from areas rested from grazing over summer, nearby areas with year-round grazing and areas subjected to pika poisoning. Additional data were collected from a site where grazing had not occurred for at least 4 years prior to the study. Poisoning pikas in spring had no detectable effect on the local abundance of birds the following autumn. However, two ground-nesting species, white-rumped and rufous-necked snowfinches, showed positive associations with the density of pika burrows, indicating that long-term 'pika poisoning could reduce the density of these species by reducing the density of pika burrows. Rufous-necked snowfinches and non ground-nesting species including horned larks and common hoopoes showed positive responses to reduced grazing pressure from livestock, particularly in the long-rested site, indicating current grazing levels could be having a negative impact on these species. Conservation of small passerine biodiversity in this system will require changed management practices for livestock and pikas that consider the complex three-way interaction between livestock grazing, pikas and small birds. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/ 02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotope ratios of single tissues or whole bodies were analyzed to establish trophic positions of main consumers living at the alpine meadow ecosystem in the Tibetan Plateau. The results demonstrated that delta C-13 and delta N-15 values of vertebrates showed great variations and ranged from -26.83 to -22.51 parts per thousand and from 2.33 to 8.44 parts per thousand, respectively. Plateau pika, root vole, plateau hare, infants of rodents and hatchlings of passerine bird species had the lowest delta C-13 and delta N-15 values. delta C-13 and delta N-15 values of omnivorous and insectivorous birds and amphibians showed intermediate. Carnivorous species, steppe polecat and Upland buzzard, and omnivorous Robin accentor and White wagtail possessed extremely higher VC and delta N-15 values. Omnivorous birds captured in earlier year had significantly less negative delta C-13 and greater delta N-15 values than those captured later. Based on steady angular enrichment between trophic levels, an "alpha and vector model" combing delta C-13 and delta N-15 values was introduced to reveal trophic positions, the results indicated that Tibetan sheep, Tibetan yak, plateau pika, root vole, plateau hare, infants of small rodents showed the lowest trophic positions (TP 1.81-2.38). While omnivorous and insectivorous birds, their hatchlings and amphibians showed intermediate trophic positions (TP 2.06-2.89), carnivorous species steppe polecat and Upland buzzard, migrant birds possessed extremely higher trophic positions (TP 2.89-3.05). The isotopic investigation of organisms and the introduced "alpha and vector model" successfully demonstrated the same trophic positions and diet prediction of consumers as nitrogen enrichment model at the alpine meadow ecosystem. Besides of this information, the "alpha and vector model" can also be incorporated into multiple isotope signatures to infer trophic relationships. This angular enrichment model has the potential to address basic ecological questions, such as trophic structure, trophic dynamics, and energy flow in other terrestrial ecosystems of properly handled. (C) 2005 Elsevier B.V. All rights reserved.