190 resultados para Particle Size
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
Sediments and soils collected from the Ya-Er Lake area in China were analysed for the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), hexachlorocyclohexane (HCHs) and hexachlorobenzene (HCB). The results indicated the main pollution problems in the Ya-Er Lake area, which was heavily polluted by HCHs and chlorobenzenes, now is dominantly polluted by PCDD/Fs, PCBs and HCB. The occurrence of PCDD/Fs and PCBs with relatively high levels of HpCDDs, OCDD and low chlorinated-substituted PCBs, is attributed to the discharge of waste water and biodegradation. The vertical distributions of HCH-residues are related with the content of organic carbon and particle size. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Hydrogenation of maleic anhydride (MAH) with Pd/C catalysts in supercritical carbon dioxide (scCO(2)) was investigated. The selectivity for gamma-butyrolactone (GBL) reached 97.3% in scCO(2) at 100% conversion of MAH, which was notably higher than that of 77.4% obtained in organic solvent of ethylene glycol dimethyl ether (EGDME). The particle size of Pd exhibited large influence on the reaction rate and selectivity of GBL. Higher selectivity of GBL was obtained with Pd/C catalyst of smaller Pd particle size, and the rate of GBL selectivity increase as a function of CO2 pressure was found to be significantly correlated with Pd particle size.
Resumo:
A series of Pr0.55Ca0.45MnO3 compounds with average particle size ranging from 2000 to 30 nm have been synthesized by the sol-gel method and their charge ordering (CO) and magnetic properties are investigated. It is observed that with particle size decreasing, the CO transition is gradually suppressed and finally disappears upon particle size down to 35 nm, while the ferromagnetism (FM) emerges and exhibits a nonmonotonous variation with a maximum at 45 nm samples. The FM components in all samples never reach long-range ordering but rather only show short-range clusters. A new explanation considering the coupling between lattice, charge, and spin in the system is raised to understand the suppression of the CO state, Both the competition between the CO/AFM and FM states and the core-shell model are employed to explain the variation of the FM phase. These results may provide a deeper insight into the physics of particle size effect on the charge ordering manganite.
Resumo:
A series of acrylic impact modifiers (AIMS) with different particle sizes ranging from 55.2 to 927.0 nm were synthesized by seeded emulsion polymerization, and the effect of the particle size on the brittle-ductile transition of impact-modified poly(vinyl chloride) (PVC) was investigated. For each AIM, a series of PVC/AIM blends with compositions of 6, 8, 10, 12, and 15 phr AIM in 100 phr PVC were prepared, and the Izod impact strengths of these blends were tested at 23 degrees C. For AIMs with particle sizes of 55.2, 59.8, 125.2, 243.2, and 341.1 nm, the blends fractured in the brittle mode when the concentration of AIM was lower than 10 phr, whereas the blends showed ductile fracture when the AIM concentration reached 10 phr. It was concluded that the brittle-ductile transition of the PVC/AIM blends was independent of the particle size in the range of 55.2-341.1 nm. When the particle size was greater than 341.1 nm, however, the brittle-ductile transition shifted to a higher AIM concentration with an increase in the particle size. Furthermore, the critical interparticle distance was found not to be the criterion of the brittle-ductile transition for the PVC/AIM blends.
Resumo:
The effect of particle size on impact strength of polymer blends with ductile fracture was studied. The results are in agreement with the experiments. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.