16 resultados para Panels of bamboo
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Bamboo reinforced epoxy possesses reasonably good properties to waarrant its use as a structural material, and is fabricated by utilizing bamboo, an abundant material resource, in the technology of fibre composites. Literature on bamboo-plastics composites is rare. This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
Bamboo bats are a group of small bats with unique skull and morphology. They roost inside hollow bamboo stems in tropical and subtropical Asia and the Ambon Islands (Moluccas). We examined 53 specimens of Tylonycteris from southern and southwestern China. Comparisons of skull and external characteristics, pelage color, shapes of thumbpads and footpads, and statistical analysis of cranial measurements revealed that specimens from Damenglong, Jinghong County, Xishuang-banna, Yunnan, are distinctly different from the other two species of Tylonycteris described so far. The Yunnan specimens are the smallest in size; have dark blackish brown pelage color; and have larger upper premolars, smaller first lower premolars, and longer C-M-3. They are sympatric with the previously described species. Here we review the genus Tylonycteri and describe a new species, Tylonycteris pygmaeus, from the Yunnan material.
Resumo:
This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
应用光学显微镜和透射电子显微镜,并结合组织化学和细胞化学方法,研究了毛竹(Phyllostachys pubescens Mazel)茎各组织中细胞壁的木质化过程、木质素异质性、酚酸类成分的分布、木质素在细胞壁中的沉积方式以及过氧化物酶的组织、细胞化学定位等。 研究结果表明:毛竹茎的原生木质部导管在维管束发育早期就已木质化;后生木质部导管和纤维细胞在维管束分化完成后,自胞间层和细胞角隅处开始木质化;基本薄壁组织细胞木质化的发生较晚,通常在茎的节间完成伸长生长后才开始,但也有少数薄壁组织细胞始终保持非木质化的薄壁状态。根据可见光显微分光光度的分析结果,纤维细胞壁在木质化的早期,主要形成愈创木基木质素(guaiacyl lignin), 随着木质化过程的发展,紫丁得基木质素(syringyl lignin)含量不断增加,最后成为纤维细胞壁木质素的主要组成成分。导管分子的木质素主要成分为愈创木基木质素,基本薄壁组织细胞壁为愈创木基与紫丁香基两种。 毛竹茎各组织在紫外光激发下自发荧光的荧光显微分光光度分析表明,氨水处理可以有效地识别阿魏酸的分布,如在竹笋各种幼嫩组织中均分布有阿魏酸;而用过氧化氢/冰醋酸混合液处理,则可以区分木素与结合于半纤维素中的阿魏酸和对-香豆酸,随着毛竹茎的生长和细胞壁木质化的增加,阿魏酸的含量下降。 通过对毛竹茎纤维细胞壁木质化过程中超微结构的观察表明,高尔基体、高尔基小泡、内质网、壁旁体细胞器在木质素前体的形成和运输等方面均起着重要作用,而周质微管在细胞壁木质化过程中的具体作用方式尚不明确。木质素在细胞壁中的沉积方式分别为:胞间层的木质素呈分散的颗粒状沉积方式,导管次生壁的木质素为片层状沉积方式,而在纤维细胞次生壁Sl层中,木质素为团块状的沉积方式。木质素沉积方式与纤维素微纤丝的排列有密切关系。 在毛竹茎各组织的细胞壁尚未木质化之前,过氧化物酶仅分布于细胞角隅处,随着细胞次生壁的增厚和木质化的增强,过氧化物酶可大量出现在次生壁中;在纤维细胞次生壁中,木质素含量较高的St各层,过氧化物酶活性也较强,而木质素含量较低的Sl各层,过氧化物酶活性则较弱。由此表明,过氧化物酶直接参与了细胞壁木质素的合成。另外,在茎的部分基本薄壁组织细胞和韧皮部等未木质化的细胞壁中,过氧化物酶也同样表现出较强的活性,这说明在茎的不同组织中分布的这种酶,可能是几种不同功能的同工酶形式。
Resumo:
对滇金丝猴栖息地60条样线和15个调查点的实地调查表明,箭竹是林下植被的主要组成部分,所处的主要群落有云南铁杉-卵叶杜鹃林,长苞冷杉-亮叶杜鹃林,白柯-假乳黄杜鹃林,西南桦-五裂枫林,黄背栎林,华山松-麻栎林等。栖息地内的多数箭竹是滇金丝猴夏季的主要食物种类之一,箭竹属植物资源对保护金丝猴具有重要意义。
Resumo:
生物多样性是人类赖以生存的物质基础,菌物多样性是生物多样性的重要组成。我国位于亚太竹区,是世界竹类的分布中心之一,有着极为丰富的竹种资源,并孕育着丰富的菌物资源。近年来,我国对木材腐朽菌,特别是多孔菌进行了广泛深入的研究,发表了许多新种和中国新记录种,但是对生于竹材上的腐朽菌却少见报道。因此,开展竹材腐朽真菌种类的研究对深入认识腐朽菌物种多样性,积极利用这些菌物资源,防治竹类病害以及竹材保藏都具有重要意义。 本论文按照多孔菌现代分类学方法对采集自我国10省市18个自然保护区、森林公园和林场的竹材腐朽真菌标本进行了初步的研究。对11种重要的竹材腐朽菌进行详细的描述和显微结构绘图,记载了每种的寄主、国内分布,并对每种与其相似种的联系和区别以及腐朽类型进行了讨论。 研究结果显示,我国范围内共记录及描述竹材腐朽真菌从5属增加到28属,新增属分别为:假芝属、薄孔菌属、小薄孔菌属、蜡孔菌属、拟蜡孔菌属、小集毛孔菌属、囊孔菌属、浅孔菌属、圆齿菌属、产丝齿菌属、耙齿菌属、容氏孔菌属、锐孔菌属、多年卧孔菌属、木层孔菌属、硬孔菌属、中国干腐菌属、干皮孔菌属、褶菌属、栓孔菌属、附毛孔菌属、孢孔菌属和中国记录属拟浅孔菌属 (Grammotheloposis),其中广义多孔菌有20属,革菌2属,齿菌1属;有15属为白腐菌,1属褐腐。 新增竹材腐朽真菌19种,其中多孔菌有15种,革菌1种,齿菌1种,褶菌2属。相似干朽菌(Serpula similis)和棕榈浅孔菌(Grammothele fuligo)竹区分布较多,前者是腐朽病原菌,后者腐朽作用不强,但影响竹材美观。二者在中国南方竹区广泛分布,是对竹材危害较严重的种类。而长江以北分布极少。另外有药用菌4种,分别为浅黄囊孔菌(Flavodon flavus)、宽棱木层孔菌(Phellinus torulosus)、裂褶菌(Schizophyllum commune)和灵芝(Ganoderma lucidum)。待定种1种(Grammotheloposis sp.)。
Resumo:
以陕北延安黄土高原为例 ,经分析得出 :(1)黄土高原在实施竹节水平沟整地工程时 ,设计暴雨可采用 10年一遇 3h降水 6 0 mm的标准 ;(2 )每个竹节的蓄水容积不得小于 2 .5m×1.2 m× 0 .35m
Resumo:
A previously published refined shear deformation theory is used to analyse free vibration of laminated shells. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first-order shear deformation theory, hut the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of symmetric cross-ply laminated cylindrical shells, symmetric and antisymmetric cross-ply cylindrical panels is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.
Resumo:
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
Resumo:
Data on sleeping site selection were collected for a group of black-and-white snub-nosed monkeys (Rhinopithecus bieti; around 80) at Mt. Fuhe, Yunnan, China (99degrees20'E, 26degrees25'N, about 3,000 m asl) from November 2000 to January 2002. At the site mainly three vegetation types were present in an elevation-ascending order: deciduous broad leaf forest, mixed coniferous and broad leaf forest, and dark coniferous forest. In addition, bamboo forest presented in areas burned in 1958. Sleeping sites (n = 10) were located in the coniferous forest, where trees were the tallest, bottommost branches were the highest, the diameter of crowns was the second largest, and the gradient of the ground was the steepest. Monkeys usually kept quiet during entering and staying at a sleeping site. The site choice and the quietness may be tactics to avoid potential predators. In the coniferous forest, however, monkeys did not sleep in the valley bottom where trees were the largest, but frequently slept in the middle of the slope towards the east/southeast, in the shadow of ridges in three other directions, to avoid strong wind and to access sunshine; in winter-spring, they ranged in a more southern and lower area than in summer-autumn. These may be behavioral strategies to minimize energy stress in the cold habitat. Monkeys often slept in the same sleeping site on consecutive nights, which reflected a reduced pressure of predation probably due to either the effectiveness of anti-predation through sleeping site selection, or the population decline of predators with increasing human activities in the habitat. The group's behavioral responses to interactive and sometimes conflicting traits of the habitat are site-specific and conform to expectations for a temperate zone primate.
Resumo:
Mn2+-doped xBaO center dot 6Al(2)O(3) and BaMgAl10O17 phosphors were prepared by solid-state reaction. The investigation of vacuum ultraviolet (VUV) excitation spectra of these phosphors exhibits that 0.82BaO center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a stronger absorption than BaO center dot 6Al(2)O(3):Mn2+ at about 147 nm. The emission spectra under VUV excitation demonstrated that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a higher luminescent intensity than BaO center dot 6Al(2)O(3):Mn2+. The lifetime analysis indicates that they have similar decay times, indicating that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ can be used as luminescent materials for plasma display panels. We observed that the critical concentration of the Mn2+ ions by host excitation is different from that of Mn2+ direct excitation, revealing a different mechanism of energy transfer. The critical distance was calculated. A model was suggested to explain the process of the energy transfer from the host to the Mn2+ ions.
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.