13 resultados para Paint, Antifouling.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Problems with tin and copper antifouling compounds have highlighted the need to develop new environmentally friendly antifouling coatings. Bacteria isolated from living surfaces in the marine environment are a promising source of natural antifouling compounds. Four isolates were used to produce extracts that were formulated into ten waterbased paints. All but one of the paints showed activity against a test panel of fouling bacteria. Five of the paints were further tested for their ability to inhibit the settlement of barnacle larvae, Balanus amphitrite, and algal spores of Ulva lactuca, and for their ability to inhibit the growth of U. lactuca. Two paints caused a significant decrease in the number of settled barnacles. One paint containing extract of Pseudomonas sp. strain NUDMB50-11, showed excellent activity in all assays. The antifouling chemicals responsible for the activity of the extract were isolated, using bioassay guided fractionation, and their chemical structures determined.
Resumo:
A complete comparative chromosome map of the white-browed gibbon (Hylobates hoolock, 2n = 38), white-cheeked gibbon (Hylobates leucogenys, 2n = 52), and human has been established by hybridising H. leucogenys chromosome-specific paints and human 24-colour paints onto H. hoolock metaphase chromosomes. In the 18 H. hoolock autosomes, we identified 62 conserved segments that showed DNA homology to regions of the 25 H. leucogenys autosomes, Numerous interchromosomal rearrangements differentiate the karyotypes of H. leucogenys and H. hoolock. Only H. hoolock chromosome 10 showed homology to one entire autosome of H. leucogenys. The hybridisation of human 24-colour paints not only confirmed most of the chromosome correspondences between human and H. hoolock established previously but also helped to correct five erroneous assignments and revealed three new segments. Our results demonstrate that the karyotypes of the extant gibbons have arisen mainly through extensive translocation events and that the karyotype of H. hoolock more closely resembles the ancestral karyotype of Hylobates, rather than the karyotype of H. leucogenys. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Conductive polyaniline was found to have special marine antifouling property. The coating from conducting polyaniline and epoxy resin(or polyurethane) can last 6-9 months in Southern China sea, i.e., less than 10% of the coating surface was fouled during this period. The conducting polyaniline has special synergetic antifouling effect on other antifouling agents like cuprous oxide or 4, 4'-dichlorodiphenyltrichloroethane. The conductivity of the polyaniline was found to be extremely important for its antifouling effect. Moreover, employing aliphatic polyamine as solvent of emeraldine base and curing agent of epoxy resin, a new technique to process corrosion prevention coating containing emeraldine base was developed, therefrom the emeraldine base and epoxy resin was in molecular level blending. This technique was solvent free and extremely effective, i.e., only 1wt% of emeraldine base in the coating can have good corrosion prevention property.
Resumo:
A paint-freeze method for preparing self-assembled alkanethiol/phospholipid bilayers on a gold surface has been described (by cyclic voltammetry, a.c impedance, polarized FTIR-ATR) to be well-ordered and packed, stable, solvent-free bilayers. The lipid order parameter was 0.67, calculated from the dichroic ratio, consistent with a well-ordered lipid film in which the methylene groups have segmental flexibility and are disordered to a degree which is typical for a lipid bilayer in the liquid-crystalline phase. Such a supported membrane provides a useful way for studies in biophysics, physiology and electrochemistry.
Resumo:
In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 mu g ml(-1) to 3.81 mu g ml(-1) while the LC50 was 266.68 lambda g ml(-1) for B. amphitrite cyprids; EC50 ranged from 0.67 mu g ml(-1) to 0.78 mu g ml(-1), and LC50 was 2.64 mu g ml(-1) for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mu g per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.
Resumo:
We have used a combination of chromosome sorting, degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), chromosome painting and digital image capturing and processing techniques for comparative chromosome analysis of members of the genus Muntiacus. Chromosome-specific ''paints'' from a female Indian muntjac were hybridised to the metaphase chromosomes of the Gongshan, Black, and Chinese muntjac by both single and three colour chromosome painting. Karyotypes and idiograms for the Indian, Gongshan, Black and Chinese muntjac were constructed, based on enhanced 4', 6-diamidino-2-phenylindole (DAPI) banding patterns. The hybridisation signal for each paint was assigned to specific bands or chromosomes for all of the above muntjac species. The interspecific chromosomal homology was demonstrated by the use of both enhanced DAPI banding and comparative chromosome painting. These results provide direct molecular cytogenetic evidence for the tandem fusion theory of the chromosome evolution of muntjac species.
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-res
Resumo:
Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/ 21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.
Resumo:
Hybrid bilayer membrane consisting of self-assembled alkanethiol and lipid monolayer on gold electrode was fabricated by the paint - freeze method. The interaction of a kind of polyanion, K7Fe3+P2W17O62H2 with such bilayer membrane was investigated by cyclic voltammetry and ac impedance. The hybrid bilayer membrane on the gold electrode showed remarkable insulating property, however, the property was lessened to some extent after interaction with the polyanion. It was found the process was in-eversible. It is presumed that the interaction between the polyanion and lipid is an interaction of K7Fe3+P2W17O62H2 with the polar head group of PC, which lessens the interaction among PC polar head groups. The resulting molecular arrangement becomes looser, even some pores are produced.
Resumo:
Supported lipid membranes consisting of self-assembled alkanethiol and lipid monolayers on gold substrates could be produced by three different deposition methods: the Langmuir-Blodgett (L-B) technique, the painted method, and the paint-freeze method, By using cyclic voltammetry, chronoamperometry/chronocoulometry and a.c. impedance measurements, we demonstrated that lipid membranes prepared by these three deposition methods had obvious differences in specific capacitance, resistance and thickness. The specific capacitance of lipid membranes prepared by depositing an L-B monolayer on the alkanethiol alkylated surfaces was 0.53 mu Fcm(-2), 0.44 mu Fcm(-2) by the painted method and 0.68 mu Fcm(-2) by the paint-freeze method. The specific conductivity of lipid membranes prepared by the L-B method was over three times lower than that of the painted lipid membranes, while that of the paint-freeze method was the lowest. The difference among the three types of lipid membranes was ascribed to the influence of the organic solvent in lipid films and the changes in density of the films. The lipid membranes prepared by the usual painted method contained a trace amount of the organic solvent. The organic solvent existing in the hydrocarbon core of the membrane reduced the density of the membrane and increased the thickness of the membrane. The membrane prepared by depositing an L-B monolayer containing no solvent had higher density and the lowest fluidity, and the thickness of the membrane was smaller. The lipid membrane prepared by the paint-freeze method changed its structure sharply at the lower temperature. The organic solvent was frozen out of the membrane while the density of the membrane increased greatly. All these caused the membrane to exist in a ''tilted'' state and the thickness of this membrane was the smallest. The lipid membrane produced by the paint-freeze method was a membrane not containing organic solvent. This method was easier in manipulation and had better reproducibility than that of the usual painting method and the method of forming free-standing lipid film. The solvent-free membrane had a long lifetime and a higher mechanical stability. This model membrane would be useful in many areas of scientific research.
Resumo:
Monensin was incorporated into phospholipid/alkanethiol bilayers on the gold electrode surface by a new, paint-freeze method to deposit a lipid monolayer on the self-assembled monolayers (SAMs) of alkanethiol. The advantages of this assembly system with a suitable function for investigating the ion selective transfer across the mimetic biomembrane are based on the characteristics of SAMs of alkanethiols and monensin. On the one hand, the SAMs of alkanethiols bring out their efficiency of packing and coverage of the metal substrate and relatively long-term stability; on the other hand, monensin improves the ion selectivity noticeably. The selectivity coefficients K-Na+,K-K+, K-Na+,K-Rb+ and K-Na+,K-Ag+ are 6 x 10(-2), 7.2 x 10(-3) and 30 respectively. However, the selectivity coefficient K-Na+,K-Li+ could not be obtained by a potentiometric method due to the specific interaction between Li+ and phospholipid and the lower degree of complexion between Li+ and monensin. The potential response of this bilayer system to monovalent ions is fairly good. For example, the slope of the response to Na+ is close to 60 mV per decade and its linearity range is from 10(-1) to 10(-5) M with a detection limit of 2 x 10(-6) M, The bilayer is stable for at least two months without changing its properties. This monensin incorporated lipid/alkanethiol bilayer is a good mimetic biomembrane system, which provides great promise for investigating the ion transfer mechanism across the biomembrane and developing a practical biosensor.