11 resultados para Pacific herring fisheries
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Molluscan shells may display a variety of colors, which formation, inheritance, and evolutionary significance are not Well understood. Here we report a new variant of the Pacific abalone Haliotis discus hannai that displays a novel orange shell coloration (O-type) that is clearly distinguishable from the Wild green-shelled abalone (G-type). Controlled mating experiments between O- and G-type abalones demonstrated apparent Mendelian segregations (1:1 or 3:1) in shell colors in F-2 families, which support the notion that the O- and G-types are under strict genetic control at a single locus With a recessive o (for orange shell) allele and a dominant G (for green shell) allele. Feeding with different diets caused modifications of shell color within each genotype, ranging from orange to yellow for O-type and green to dark-brown for the G-type, without affecting the distinction between genotypes. A previously described bluish-purple (B-type) shell color was found in one of the putative oo X oG crosses, suggesting that the B-type may be it recessive allele belonging to the same locus. The new O-type variant had no effect on the growth of Pacific abalone on the early seed-stage. This Study demonstrates that shell color in Pacific abalone is subject to genetic control as well as dietary modification, and the latter probably offers selective advantages in camouflage and predator avoidance.
Resumo:
Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Heat shock proteins (Hsps) are molecular chaperones that help organisms cope with stressful conditions. Here, we report on the growth rates and Hsp70 expressions in inbred and hybrid populations of abalone Haliotis discus hannai Ino. In abalone, inbred populations expressed more Hsp70 than hybrid populations at all temperatures, except at very high temperatures close to the physiological limit. At benign temperatures, there was a clear trend towards higher Hsp70 expression in inbred than hybrid populations, whereas at higher temperatures, a trend in the opposite direction was observed. The temperature of maximal Hsp70 expression (T-peak) varied with the population type. The T-peak of inbred populations (26 degrees C) was lower than that of the hybrid populations (28 degrees C). The maximal inducible Hsp70 of inbred populations was higher than that of hybrid populations. The results showed a trend towards higher expression in inbred population at a lower temperature. These results provide direct experimental evidence that hybrids can cope with the intrinsic stress even at non-stressful temperatures. The constitutive Hsp70 may therefore be used for marker-assisted selection in a breeding programme.
Resumo:
The locations and effects of quantitative trait loci (QTL) were estimated for nine characters for growth-related traits in the Pacific abalone (Haliotis discus hannai Ino) using a randomly amplified polymorphic DNA (RAPD), amplification fragment length polymorphism (AFLP) and SSR genetic linkage map. Twenty-eight putatively significant QTLs (LOD > 2.4) were detected for nine traits (shell length, shell width, total weight, shell weight, weight of soft part, muscle weight, gonad and digestive gland weight, mantle weight and gill weight). The percentage of phenotypic variation explained by a single QTL ranged from 8.0% to 35.9%. The significant correlations (P < 0.001) were found among all the growth-related traits, and Pearson's correlation coefficients were more than 0.81. For the female map, the QTL for growth were concentrated on groups 1 and 4 linkage maps. On the male map, the QTL that influenced growth-related traits gathered on the groups 1 and 9 linkage maps. Genetic linkage map construction and QTL analysis for growth-related traits are the basis for the marker-assisted selection and will eventually improve production and quality of the Pacific abalone.
Resumo:
Although single nucleotide polymorphisms (SNPs) are important resources for population genetics, pedigree analysis and genomic mapping, such loci have not been reported in Pacific abalone so far. In this study, a bioinformatics strategy was adopted to discover SNPs within the expressed sequences (ESTs) of Pacific abalone, Haliotis discus hannai, and furthermore, polymerase chain reaction direct sequencing (PCR-DS) and allele-specific PCR (AS-PCR) were used for SNPs detection and genotype scoring respectively. A total of 5893 ESTs were assembled and 302 putative SNPs were identified. The average density of SNPs in ESTs was 1%. Fifty-two sets of sequencing primers were designed from SNPs flanking ESTs to amplify the genomic DNA, and 13 could generate products of expected size. Polymerase chain reaction direct sequencing of the amplification products from pooled DNA samples revealed 40 polymorphic SNP loci. Using a modified tetra-primer AS-PCR, seven mitochondrial and six nuclear SNPs were typed and characterized among 37 wild abalones. In conclusion, it is feasible to discover SNPs from number limited ESTs and the AS-PCR as a simple, robust and reliable assay could be a primary method for small- and medium-scale SNPs detection in abalones as well as other non-model organisms.
Resumo:
During winter months, a novel overwintering mode of transferring juvenile abalones to open seawaters in southern China rather than keeping them in closed land-based nursery systems in northern China is a popular practice. The initial size, stocking density and sorting are among the first considerations when establishing an abalone culture system. This study aimed to investigate the effects of these factors on the growth of juvenile Pacific abalone, Haliotis discus hannai Ino, during overwintering. Juvenile abalones were reared in multi-tier basket form for overwintering in open seawaters in southern China for 106 days. The daily growth rates (DGRs) in the shell length of all experimental groups ranged from 67.08 to 135.75 mu m day(-1), while the specific growth rates (SGRs) were 0.2447-0.3259% day(-1). Variance analysis indicated that both DGRs and SGRs in shell length were significantly affected by the initial body size and stocking density. Furthermore, the effects of stocking density on DGRs and SGRs varied with the initial size. However, sorting abalones according to their initial sizes may not be necessary in practice as sorting did not alter growth significantly at all densities in this study. Factors potentially affecting abalone growth such as genetic control and intraspecific competition were discussed.
Resumo:
Heat shock protein 70 (HSP70), the primary member of HSPs that are responsive of thermal stress, is found in all multicellular organisms and functions mostly as molecular chaperon. The inducible HSP70 cDNA cloned from Pacific abalone (Haliotis discus hannai) using rapid amplification of cDNA ends (RACE), was highly homologous to other HSP70 genes. The full-length cDNA of the Pacific abalone HSP70 was 2631 bp, consisting of a 5'-terminal untranslated region (UTR) of 90 bp, a 3'-terminal UTR of 573 by with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1968 bp. The HSP70 cDNA encoded a polypeptide of 655 amino acids with an ATPase domain of 382 amino acids, the substrate peptide binding domain of 161 amino acids and a C-terminus domain of 112 amino acids. The temporal expression of HSP70 was measured by semi-quantitative RT-PCR after heat shock and bacterial challenge. Challenge of Pacific abalone with heat shock or the pathogenic bacteria Vibrio anguillarum resulted in a dramatic increase in the expression of HSP70 mRNA level in muscle, followed by a recovery to normal level after 96 h. Unlike the muscle, the levels of HSP70 expression in gills reached the top at 12 h and maintained a relatively high level compared with the control after thermal and bacterial challenge. The upregulated mRNA expression of HSP70 in the abalone following heat shock and infection response indicates that the HSP70 gene is inducible and involved in immune response. (c) 2006 Elsevier Ltd. All rights reserved.