216 resultados para PT NANOPARTICLES

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An easy surface-modified method has been developed to link -NH2 groups to the TiO2 colloidal spheres with nanoporous surface (f-TiO2). It was found that the as-prepared f-TiO2 is positively charged in neutral conditions and could act as an electrostatic anchor for nanosructures with opposite charge, Furthermore, platinum nanoparticles (Pt NPs) are successfully assembled on the f-TiO2 mainly via electrostatic interaction to fabricate a new kind of Pt NPs/TiO2 hybrid nanomaterial (f-TiO2-Pt NPs). The morphology, structure, and composition of the hybrids were characterized by the means of diverse techniques such as transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Raman spectra. Electrochemical experiments indicate the electrode modified with f-TiO2-Pt NPs shows prominent electrocatalytic activity toward the oxidation of hydrogen peroxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A green synthetic strategy to prepare monodisperse Pt nanoparticles was reported. Aminodextran acted as the reductive and protective agents, and Pt nanoparticles were characterized by UV/vis spectroscopy (UV-vis), Pt nanoparticles were conveniently obtained at one step. transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). By changing the initial molar ratio of arninodextran to platinum precursor, Pt nanoparticles with different size were obtained. Amino groups of aminodextran could absorb on Pt nanoparticles surfaces and serve as a very good stabilizer. However, dextran without amino groups could not effectively stabilize Pt nanoparticles and aggregation of Pt nanoparticles were obtained. Catalytic activity of these Pt nanoparticles for the electron-transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions was also studied, and they showed good catalytic efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PtCl62- anions were assembled on a glassy carbon electrode with [tetrakis(N-methylpyridyl)porphyrinato]cobalt cations through layer-by-layer method. then electrochemically reduced to yield zero valent Pt nanoparticles. Regular growth and surface morphology of the multilayer films were characterized by UV/vis. XPS and AFM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42- on the MWNTs' sidewalls. Deposition of Pt NPs on the MWNTs' sidewalls was realized by in situ chemical reduction of anionic ions PtCl42- with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, platinum nanoparticles were prepared by in situ reduction with polyethylene glycols (PEGs). The catalytic performance of Pt nanoparticles immobilized in PEGs (Pt-PEGs) is discussed for the hydrogenation of o-chloronitrobenzene (o-CNB). A high selectivity to o-chloroaniline (o-CAN) of about 99.7% was obtained with the Pt-PEGs catalysts at the complete conversion of o-CNB, which is much higher than that (83.4%) obtained over the conventional catalyst of Pt/C. The Pt nanoparticies could be immobilized in PEGs stably and recycled for four times with the same activity and selectivity. It presents a promising performance in the hydrogenation and its wide application in catalytic reactions is expected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.