15 resultados para PROBING DARK ENERGY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We reconstruct the interaction rate between dark matter and the holographic dark energy with the parametrized equation of states and the future event horizon as the infrared cutoff length. It is shown that the observational constraints from the 192 type Ia Supernovae (SnIa) and baryon acoustic oscillation (BAO) measurement permit the negative interaction in the wide region. Moreover, the usual phenomenological descriptions cannot describe the reconstructed interaction well for many cases. The other possible interaction is also discussed.
Resumo:
Using the momentum- and isospin-dependent Boltmann-Uehling-Uhlenbeck (BUU) model, we investigate the transverse flow and balance energy in two isotopic colliding systems Ca-48+Fe-58 and Cr-48+Ni-58 by adopting different symmetry potentials. By comparing the results between the two colliding systems, we find that the difference between the balance energies of two isotopic systems can be considered as a sensitive probe to the density dependence of symmetry energy.
Resumo:
We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.
Resumo:
Based on the isospin- and momentum-dependent transport model IBUU04, we investigated the neutron-proton differential flow in the (132) Sn + (124) Sn mid-central collisions at beam energies of 400MeV/A, 600MeV/A and 800MeV/A by adopting two different symmetry energies. It was found that the neutron-proton differential flow as a function of rapidity is very sensitive to the density dependence of symmetry energy, especially at incident energies around 400MeV/A
Resumo:
Based on a transport model IBUU04, the double n/p ratio is studied. It is found that the double n/p ratio has almost the same sensitivity to the density dependence of nuclear symmetry energy as the single n/p ratio does. Because the double n/p ratio of nucleon emissions taken from two reaction systems can reduce systemic errors effectively, it is thus more useful for constraining the density-dependent symmetry energy further.
Resumo:
Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the pi(-)/pi(+) ratio in the following three reactions: Ca-48+Ca-48, Sn-124 +Sn-124 and Au-197+Au-197 with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 A GeV. It is shown that the sensitivity of probing the E-sym (rho) with pi(-)/pi(+) increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior Of nuclear symmetry energy at supra-saturation densities.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6. Ska and SIB, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI Collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
PROBING THE SYMMETRY ENERGY AT SUPRA-SATURATION DENSITIES FROM PION EMISSION IN HEAVY-ION COLLISIONS
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the emission of pion in heavy-ion collisions in the region 1 A GeV as a probe of nuclear symmetry energy at supra-saturation densities is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska and SIII, and also for the cases of different stiffness of symmetry energy with the parameter SLy6. Preliminary results compared with the measured data by the FOPI collaboration favor a hard symmetry energy of the potential term proportional to (rho/rho(0))(gamma s) with gamma(s) = 2.
Resumo:
Under identical preparation conditions, Au/GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. (c) 2006 American Institute of Physics.
Resumo:
We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.
Resumo:
Probing in-medium nucleon-nucleon (NN) cross section sigma(1)(NN)(alpha) in heavy ion collisions has been investigated by means of the isospin-dependent quantum molecular dynamics (IQMD) with the isospin- and momentum- dependent interaction (IMDI(tau)). It is found that there are the very obvious medium effect and the sensitive isospin- dependence of nuclear stopping R on the in-medium NN cross section sigma(1)(NN)(alpha) in the nuclear reactions induced by halo-neutron projectile and the same-mass stable projectile. However, R induced by the neutron-halo projectile is obviously lower than that induced by the corresponding stable projectile. In particular, there is a very obvious dependence of R on the medium effect of sigma(1)(NN)(alpha) in the whole beam energy region for the above two kinds of projectiles. Therefore, the comparison between the results of R's in the reactions induced by the neutron-halo projectile and the corresponding same-mass stable projectile is a more favourable probe for extracting the information of sigma(1)(NN)(alpha) because of adding a new judgement.
Resumo:
In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.
Resumo:
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments ( for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier.