49 resultados para POLYOL-MEDIATED SYNTHESIS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An interesting shape evolution of. PbS crystals, that is, from cubes to (truncated) octahedra and finally to stable star-shaped multipods with six arms along the < 100 > directions is first realized via a facile polyol-mediated reaction between lead acetate and sulfur powder in the absence of surfactants. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) techniques were employed to characterize the samples. We elucidate the important parameters (including reaction temperature and sulfur sources) responsible for the shape-controlled synthesis of PbS crystals.
Resumo:
Nano-submicrostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), thermogravimetry-differential thermal analysis (TG-DTA), photoluminescence (PL), cathodo-luminescence (CL) spectra and PL lifetimes. The results of XRD indicate that the as-prepared samples are well crystallized with the scheelite structure of CaWO4. The FE-SEM images illustrate that CaWO4 and CaWO4 : Pb2+ and CaWO4 : Tb3+ powders are composed of spherical particles with sizes around 260, 290, and 190 nm respectively, which are the aggregates of smaller nanoparticles around 10-20 nm. Under the UV light or electron beam excitation, the CaWO4 powders exhibits a blue emission band with a maximum at about 440 nm. When the CaWO4 particles are doped with Pb2+, the intensity of luminescence is enhanced to some extent and the luminescence band maximum is red shifted to 460 nm. Tb3+-doped CaWO4 particles show the characteristic emission of Tb3+ D-5(4)-F-7(J) (J=6-3) transitions due to an energy transfer from WO42- groups to Tb3+.
Resumo:
Besides the spheres, polyhedral silver nanoclusters were prepared by the polyol process with 3-aminopropyl triethoxysilane (APTES). In the process, APTES acts as not only the stabilizer but also the template.
Resumo:
Single crystalline Bi2S3 With various morphologies (wires, rods, and flowers) has been successfully prepared via a simple polyol solution process and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The morphologies of Bi2S3 crystals are highly dependent on the experimental parameters, including the reaction temperature, reactant ratio, sulfur source, and additive. The adjustment of these parameters can lead to an obvious shape evolution of products, and the growth mechanism has been proposed.
Resumo:
In this paper, nanocrystalline YVO4:Eu3+ powders have been successfully synthesized via high-temperature solution-phase synthesis process. The nanocrystalline YVO4:Eu3+ particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UVNis absorption spectra and luminescence spectra, luminescence decay curve and Fourier transform infrared (FT-IR), X-ray photoelectron spectra (XPS) respectively. The as-prepared nanocrystalline YVO4:Eu3+ particles are well crystallized with ellipsoidal morphology.
Resumo:
In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine.
Resumo:
We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.
Resumo:
In this paper, a facile sol-gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385 nm in diameter) and Cr2O3, alpha-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@alpha-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface Of SiO2 Particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products.
Resumo:
CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.
Resumo:
We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes have been prepared by a combination method of sol-gel process and electrospinning. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low voltage cathodoluminescence (CL) and time-resolved emission spectra, as well as kinetic decays were used to characterize the resulting samples. The results of XRD, FT-IR, TG-DTA indicate that the CaWO4 and CaWO4: Tb3+ samples begin to crystallize at 500 degrees C with the scheelite structure. Under ultraviolet excitation and low-voltage electron beams excitation, the CaWO4 samples exhibit a blue emission band with a maximum at 416 nm originating from the WO42- groups, while the CaWO4:Tb3+ samples show the characteristic emission of Tb3+ corresponding to (D4-F6,5,4,3)-D-5-F-7 transitions due to an efficient energy transfer from WO42- to Tb3+.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with S-4(3/2) -> I-4(15/2) at similar to 540 nm and F-4(9/2) -> I-4(15/2) at similar to 653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.
Resumo:
CeF3: Tb3+ nanoparticles (short pillar-like morphology with an average length and width of 11 and 5 nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO2-NH2 layer, these CeF3: Tb3+ nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF3: Tb3+ nanoparticles, CeF3: Tb3+ nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF3: Tb3+ nanoparticles and biotinylated CeF3: Tb3+ nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF3: Tb3+ nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb3+, with D-5(4) - F-7(5) at 543 nm as the most prominent group), indicative of the great potential for these CeF3: Tb3+ nanoparticles to be used as biological fluorescence probes.