310 resultados para POLY(ETHER-ETHER-KETONE)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ring-banded spherulites in liquid crystalline poly(aryl ether ketone) (LC-PAEK) and poly(aryl ether ether ketone) (PEEK) blends with a higher content (>50%) of LC-PAEK are investigated by polarizing light microscopy (PLM) and atomic force microscopy (AFM) techniques. The results indicate that the light core and rings of the ring-banded spherulites under PLM are mainly composed of an LC-PAEK phase, while the dark rings consist of coexisting phases of PEEK and a small amount of LC-PAEK. The formation of the ring-banded spherulites is attributable to structural discontinuity caused by a rhythmic radial growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray diffraction patterns of the crystalline aromatic ketone polymer PEKEKmK (aryl ether ketone ether ketone ketone polymer containing meta-phenyl links) have been investigated (for the chemical structure, see Formula). An orthorhombic unit cell is proposed to contain two chains with a = 0.772 nm, b = 0.604 nm and c = 2.572 nm. According to the orthorhombic system, the 11 reflections of this polymer were indexed. Meanwhile, variation in unit cell parameters with crystallization temperatures of PEKEKmK was also investigated. [GRAPHICS]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ether ketone ether ketone ketone) containing meta-phenylene linkage (PEKEKK(T/I)) was synthesized by electrophilic Friedel-Crafts acylation condensation of 1, 4-diphenoxybenzophenone with terephthaloyl chloride (T) and isophthaloyl chloride (I) with a T/I ratio of 1 and characterized by LR,DSC,TGA and WAXD. PEKEKK(T/I) has two different crystal structures: a conventional Farm I structure, the same as that observed in PEEK and PEK, wich is usually developed from melt crystallization, and a new Form II structure which can be developed from cold crystallization or solvent induced crystallization (by exposing the glassy sample to methylene chloride).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of wollastonite-filled phenolphthalein poly(ether ketone) (PEK-C) composites have been studied at room temperature and 200 degrees C. The dispersion of wollastonite particles in PEK-C matrix were investigated by means of scanning electron microscope. The modulus and strength of the composites increased with filler content. The reinforced effect of wollastonite on PEK-C is more marked at elevated temperature. The glass transition temperature of the composites is higher than that of PEK-C and is independent of filler content. The restriction effect of tiller particles on the molecular mobility of the polymer matrix should be attributed to the reinforcement. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of poly(ether ketone ketone) (PEKK) is predicted by using Cerius2 software according to the wide angle X-ray diffraction (WAXD) experiment result. The predicted structure has a planar zigzag chain conformation between ether oxygen and ketone carbons in an orthorhombic lattice. Average zigzag angle is 126 degrees and average torsion angle is 30.32 degrees. The WAXD powder pattern calculated from the crystal packing model is in good agreement with the experiment result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to stress relaxation curves of phenolphthalein poly(ether ketone) (PEK-C) at different temperatures and the principle of time-temperature equivalence, the master curves of PEK-C at arbitrary reference temperatures are obtained. A coupling model (Kohlrausch-Williams-Watts) is applied to explain quantitatively the different temperature dependence of stress relaxation behavior and the relationship between stress relaxation and yield phenomenon is established through the coupling model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Izod impact fracture behaviour of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a temperature range from room temperature to 240 degrees C by using an instrumented impact tester. The temperature dependence of the maximum load, total impact energy, initiation energy, propagation energy, ductility index (DI) and the relationships between these parameters and the relaxation processes have been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress relaxation and dynamic mechanical behavior of phenolphthalein poly(ether ketone) (PEK-C) have been investigated. Using Ferry's reduction method, the master curve was obtained. From the experimental results, we found that the WLF equation is not appropriate in the lower-temperature range (T < T-g). The relaxation spectrum was calculated according to the first approximation method proposed by Schwarzl and Staverman. In addition to the alpha-transition region, a second transition zone is revealed at low temperature. This transition is probably due to a restricted motion of its main chain. (C) 1995 John Wiley and Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolphthalein poly(ether ketone) (PEK-C) was tested using an instrumented impact tester to determine the temperature effect on the fracture toughness K-c and critical strain energy release rate G(c). Two different mechanisms, namely the relaxation processes and thermal blunting of the crack tip were used to explain the temperature effect on the fracture toughness. Examination of the fracture surfaces revealed the presence of crack growth bands. It is suggested that these bands are the consequence of variations in crack growth along crazes that are formed in the crack tip stress field. As the crack propagates, the stress is relaxed locally, decreasing the growth rate allowing a new bundle of crazes to nucleate along which the crack advances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fracture toughness values of phenolphthalein poly(ether ketone) (PEK-C) at 190 degrees C were determined by two different methods, i. e. the conventional crack growth method and the crack stress whitening zone method, which show consistent results. This indicates that the crack stress whitening zone method can be used to determine the crack initiation of some polymers for which the blunting line concept is unsuitable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate/temperature dependence of yield stress, tensile modulus and crack opening displacement of phenolphthalein poly(ether ketone) (PEK-C) has been investigated. The rate/temperature dependence of crack opening displacement and the correlation establis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolphthalein poly (ether ketone) (PEK-C) [GRAPHICS] can fail by tearing instability when the elastic contraction is greater than the plastic extension due to crack growth. Tearing instability (TIS) theory developed by Paris and c