281 resultados para POLY(3-HYDROXYBUTYRATE)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were significantly modified by a hydrogen bonding (H-bond) monomer-bisphenol A (BPA). BPA lowered the T-m of PHBV and widened the heat-processing window of PHBV. At the same time, a dynamic H-bond network in the blends was observed indicating that BPA acted as a physical cross-link agent. BPA enhanced the T, of PHBV and reduced the crystallization rate of PHBV. It resulted in larger crystallites in PHBV/BPA blends showed by WAXD. However, the crystallinity of PHBV was hardly reduced. SAXS results suggested that BPA molecules distributed in the inter-lamellar region of PHBV. Finally, a desired tension property was obtained, which had an elongation at break of 370% and a yield stress of 16 MPa. By comparing the tension properties of PHBV/BPA and PHBV/tert-butyl phenol blends, it was concluded that the H-bond network is essential to the improvement of ductility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to modify poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV), the crosslinking of this copolymer was carried out at 160degreesC using dicumyl peroxide (DCP) as the initiator. The torque of the PHBV melt showed an abrupt upturn when DCP was added. Appropriate values for the gel fraction and crosslink density were obtained when the DCP content was up to 1 wt% of the PHBV. According to the NMR spectroscopic data, the location of the free radical reaction was determined to be at the tertiary carbons in the PHBV chains. The melting point, crystallization temperature and crystallinity of PHBV decreased significantly with increasing DCP content. The effect of crosslinking on the melt viscosity of PHBV was confirmed as being positive. Moreover, the mechanical properties of PHBV were improved by curing with DCP. When 1 wt% DCP was used, the ultimate elongation of PHBV increased from 4 to 11 %. A preliminary biodegradation study confirmed the total biodegradability of crosslinked PHBV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graft copolymerization of maleic anhydride (MA) onto poly(3-hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of nucleating agents on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (T-c) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187degreesC. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition mechanism of maleated poly(3-hydroxybutyrate) (PHB) was investigated by FTIR and H-1 NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six-membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating-up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy E. as a kinetic parameter of thermal decomposition was estimated by the Flynn-Wall-Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (3-hydroxybutyrate) (PHB) films were biodegraded by DS9701. The degradation process was monitored by using SEM. It was shown that the PHB degradation occurred firstly in the amorphous part of PHB and then in the crystalline part, especially from the center of PHB spherulites. PHB deplymerase produced by DS9701 mainly attacked the second ester bond of PHB and the degraded product was dimmer, determined by using mass spectrometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To synthesize the copolyester of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by C-13 NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(beta-hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small-angle X-ray scattering (SAXS). As the PMA content increases in the blends, the glass-transition temperature and cold-crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium-melting-point depression, is -0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PRE. The radial growth rates of spherulites were analyzed with the Lauritzen-Hoffman model. The spherulites of PHB were volume-filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal stability, crystallization behavior and biodegradability of poly(beta -hydroxybutyrate) (PHB) grafted with maleic anhydride (MA) were studied by DSC,TGA, optical microscopy and WAXD. The results showed that thermal stability of maleated PHB was obviously improved, comparing with that of pure PHB. The temperature of decomposition was enhanced about 20 degreesC After grafting MA, the crystallization behavior of PHB changed evidently. The rate of spherulite growth decreased, the crystallization temperature from the melt state reduced, and the cold crystallization temperature from the glass state increased. With the increase in graft degree, the banding texture of spherulite became more distinct and orderly. Moreover, the introduction of MA groups promoted the biodegradation of PHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility and crystallization behavior of poly(beta-hydroxybutyrate) (PHB) and poly(p-vinylphenol) (PVPh) blends were studied by differential scanning calorimetry and optical microscopy (OM). The blends exhibit a single composition-dependent glass transition temperature, characteristic of miscible systems, A depression of the equilibrium melting temperature of PHB is observed. The interaction parameter values obtained from analysis of the melting point depression are of large negative values, which suggests that PHB and PVPh blends are thermodynamically miscible in the melt. Isothermal crystallization kinetics in the miscible blend system PHB/PVPh was examined by OM. The presence of the amorphous PVPh component results in a reduction in the rate of spherulite growth of PHB. The spherulite growth rate is analyzed using the Lauritzen-Hoffman model, The isothermally crystallized blends of PHB/PVPh were examined by wide-angle X-ray diffraction and smell-angle X-ray scattering (SAXS). The long period obtained from SAXS increases with the increase in PVPh component, which implies that the amorphous PVPh is squeezed into the interlamallar region of PHB.