14 resultados para PILOT SCALE

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to imitate the restoration succession process of natural water ecosystem, a laboratory microcosm system of constant-flow-restoration was designed and established. A eutrophycation lake, Lake Donghu, was selected as the subject investigated. Six sampling stations were set on the lake, among which the water of station IV was natural clean water, and others were polluted with different degrees. Polyurethane foam unit microbial communities, which had colonized in the stations for a month, were collected from these stations and placed in their respective microcosms, using clean water of station IV to gradually replace the water of these microcosms. In this process, the healthy community in clean water continuously replaced the damaged communities in polluted water, the restoration succession of the damaged communities was characterized by weekly determination of several functional and structural community parameters, including species number (S), diversity index (DI), community pollution value (CPV), heterotrophy index (HI), and similarity coefficient. Cluster analysis based on similarity coefficient was used to compare the succession discrepancies of these microbial communities from different stations. The ecological succession of microbial communities during restoration was investigated by the variable patterns of these parameters, and based on which, the restoration standards of these polluted stations were suggested in an ecological sense. That was, while being restored, the water of station 0 (supereutrophycation) should be substituted with natural clean water by 95%; station I (eutrophycation), more than 90%; station II (eutrophycation), more than 85%; station III (eutrophycation), about 85%; station V (mesoetitrophycation), less than 50%. The effects of the structural and functional parameters in monitoring and assessing ecological restoration are analyzed and compared. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the preparations of biodiesel from three different feedstocks, including rapeseed oil, high acidified Chinese wood oil and trap grease, were carried out in a pilot scale of 200 t yr(-1) biodiesel production system. The optimum operating conditions for transesterification of rapeseed oil in plug flow reactor were found to be as follows: the catalyst dosage is 1.2 wt%; the retention time is about 17 min; the bed temperature is 65 degrees C; the oil/methanol ratio is 1:6; the content of methyl ester is 96.33% under these conditions. A kind of ion exchange resin, a solid acid catalyst, filled in the fixed bed reactor was used as the esterification catalyst for the pretreating of high acidified oil. The acid value of Chinese wood oil could be reduced from 7 to 0.8 mg KOH.g(-1) after 88 min, the optimum operating conditions were obtained as follow: molar ratio of methanol to oil is about 6:1, the temperature of the fixed bed, 65 degrees C and the retention time, about 88 min. Also a kind of acidified oil, namely trap grease, with the acid value being 114 mg KOH.g(-1) could be equally converted to a good biodiesel product through this system. Generally, the refined biodiesel product generated through this system could meet China #0 Biodiesel Standard, as well as Germany Biodiesel Standard for most indexes. It indicates that the designed process in this system has a good adaptability for different kinds of oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recombinant allophycocyanin (rAPC), used for treatment of tumors, has been expressed in E. coli which was grown in glucose fed-batch culture in a 30 l fermentor. Recombinant allophycocyanin was purified from soluble E. coli cell lysate using hydrophobic interaction chromatography followed by chromatography using amylose affinity column. The purity of product was greater than 98% and yielded an average of 5.5 g kg(-1) dry cells. Recombinant allophycocyanin significantly inhibited H-22 hepatoma (p (0.01) in mice with inhibition rates ranging from 36% to 62% with doses from 6.25 to 50 mg kg(-1) d(-1).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phycobiliprotein is a photosynthetic antenna pigment found in cyanobacteria, rhodophytes, cryptophytes and certain dinoflagellates, which has been found to have anti-oxidative and anti-tumour activities. In this paper, a recombinant allophycocyanin (rAPC) had been expressed in Escherichia coli for anti-tumour effect. E. coli cells were cultured using glucose fed-batch method to achieve high cell densities. The biomass of rAPC was up to 3.52 g/L broth. The rAPC was purified from soluble E. coli cell lysate employing hydrophobic interaction chromatographic (HIC) method developed at the bench scale using 20 mL column. The process was performed at the pilot scale using 500 mL column for evaluation of scale-up. An amylose affinity column was used to improve the purity of final product in pilot scale purification. The purification process resulted in greater than 98% pure product and yielded up to 2.0 g/kg wet cells at the bench scale and 1.2 g/kg wet cells at the pilot scale. Peptide mapping was used to prove the identity of rAPC purified from bench scale and pilot scale process. Purified rAPC at the pilot scale was found to have remarkable inhibition on S-180 carcinoma in mice. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800 degrees C and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pipeline with a bypass is widely used for the pneumatic conveying of material. The double-tube-socket (DTS (R)) technology, which uses a special inner bypass, represents the current state of the art. Here, a new methodology is proposed based on the use of computational fluid dynamics (CFD) to predict the energy consumption of DTS conveying. The predicted results are in good agreement with those from pilot-scale experiments. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

近年来,我国炼油行业发展迅速,炼油能力全世界第二,炼油行业已成为污染大户。本研究针对炼油废水生物处理中存在的稳定达标难、抗冲击负荷能力差、建设投资与运行成本高等问题,就菌剂强化处理炼油废水中试与工程应用展开了研究,以期为菌剂的工程应用与推广提供理论参考与技术支持;并以炼油废水中的主要特征污染物苯酚为研究对象,考察了不同浓度苯酚冲击下功能菌的响应机制,并以此为指导研制功能菌激活促进剂,考察其对功能菌生物学指标的调控效果,以期为废水生物处理有毒污染物冲击调控提供理论依据与技术支持。 中试研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值为86.7、7.6 mg/L,其平均去除率较常规生物处理系统分别提高了35.47%、59.28%,其耐受COD、NH4+-N 容积负荷分别高达2.42、0.139kg/(m3·d),具有良好的耐冲击能力。工程应用研究表明,菌剂强化处理炼油废水,出水COD、NH4+-N 平均值分别为85.05、8.4mg/L,其去除率较常规生物处理系统提高了25.1%、28.7%,出水水质各项指标均达到了国家《污水综合排放标准GB 8978-1996》一级排放标准。技术经济分析表明,菌剂强化处理炼油废水在建设成本、运行成本上分别降低38%、49%,具有良好的技术经济优势。 苯酚冲击下功能菌响应机制研究表明:不同浓度苯酚冲击下,生物学指标生物量、脱氢酶酶活、1,2-双加氧酶酶活对冲击都有不同程度的响应,其响应敏感程度为脱氢酶酶活>生物量>1,2-双加氧酶酶活。1,2-双加氧酶酶活与COD 降解率相关性良好,可表征苯酚降解过程,确认为调控重点。以此为指导研制出苯酚降解功能菌抗冲击激活促进剂,可有效调控功能菌对有毒污染物苯酚的降解效果,1000mg/L 苯酚冲击下,经调控,其COD 去除率较对照提高20%,降解时间缩短16%以上。其对生物学指标的调控效果为1,2-双加氧酶酶活>生物量>脱氢酶酶活,验证了功能菌在苯酚冲击下的响应机制。研究表明菌剂强化处理炼油废水切实可行,具有良好的技术经济优势。有毒污染物冲击下废水生物处理系统响应机制研究为抗冲击调控提供了新的研究思路。 Currently, China’s oil refining industry is developing rapidly and has become the second largest all over the world. The oil refining industry is one of the major pollution industries in our country. The pilot scale study and engineering application research were conducted aiming at the problems in refining wastewater such as poor treatment stability and water quality, poor anti-shock capacity and expensive running cost, etc., so as to provide theoretical references and technological supports for the engineering application and popularization of microbial preparation in wastewater treatment. Also, the response mechanism of functional microbe under shock of different phenol concentrations, which is the main pollutants in refinery wastewater, was studied. Based on this result, functional microbe activation accelerator was developed, and the regulation effect of functional microbe biological index under phenol shocking were studied, in order to provide theoretical basis and technological support for regulation of toxic shocking of wastewater biological treatment. The result of pilot scale research indicated: for treatment of refinery wastewater in bioaugmention treatment system of microbial preparation, the COD and NH4+-N average value of effluent was 86.7 and 7.6 mg/L, Comparing with normal biological treatment system, the average removal rates of COD, NH4+-N increased 35.47%,59.28% separately by bioaugmention treatment system, which showed better anti-shocking capacity, the volumetric load r of COD and NH4+-N reached 2.42 kg/(m3·d) and 0.139 kg/(m3·d), respectively. The research on engineering application of refinery wastewater bioaugmentation treatment by microbial preparation indicated:the average concentrations of effluent COD and NH4+-N in the bioaugmentation treatment system were 85.05 and 8.4mg/L, which increased by 25.1% and 28.7% comparing with normal biological treatment system of refinery wastewater, And the effluent quality meets the first grade of discharging standard of National Integrated Wastewater Discharge Standard GB 8978-1996. The economic analysis of technology indicated: the demonstration project of bioaugmentation treatment of refinery wastewater by microbial preparation decreased by 38% in construction cost and 49% in running cost. This technology has economic benefits. The response mechanism of functional microbe under phenol shock indicated: biological index such as the biomass concentration, dehydrogenase and 1,2-dioxygenase had different responses under phenol shocking of different concentrations. The response sensitivity of different biological index under phenol shocking of different concentrations is: dehydogenase activity > biomass >1,2-dioxygenase activity, and high correlation of 1,2-dioxygenase and COD degradation percentage is achieved, thus 1,2-dioxygenase could be used to reflect the degradation situation of pollutants. So, 1,2-dioxygenase is the keypoint of regulation. The anti-shock activation accelerator of phenol degradation functional microbe was primarily developed. The results indicated: the activation accelerator could regulate the degradation effect of toxic substance-phenol by functional microbe effectively. For the functional microbe treatment system under phenol shocking of 1000mg/L, the COD degradation rate increased by 20% and the degradation time reduced by more than 16% under regulation of activation accelerator. The regulation effects of biological index are: 1,2-dioxygenase > biomass > dehydrogenase. In this way, the response mechanism of functional microbe under toxic shocking is verified. The result indicated: the augmented microbial preparation treatment of refinery wastewater is applicable. It has many technical and economical advantages. The research results of responses mechanism of wastewater treatment system on toxic pollutants would offer a new idea for regulation of anti-shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m- 3 h- 1 and 203.80 kg m- 3 h- 1 when gas hourly space velocities were 650 h- 1 and 1200 h- 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.