297 resultados para PERMEATION BEHAVIOR

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel polyetheretherketone (PEK-C) prepared from phenolphthalein in our institute is an amorphous, rigid, tough material with good mechanical properties over a wide temperature range. To improve its water vapor permeability for the application of gas drying, PEK-C was sulfonated with concentrated sulfuric acid and transferred in sodium, cupric, and ferric salt forms. Sulfonation degree can be regulated by controlling the temperature and reaction time. Characterization of sulfonated PEK-C in sodium form was made by infrared spectroscopy. Some properties of the sulfonated PEK-C, such as solubility, glass transition temperature, thermal stability, mechanical properties, and transport properties to nitrogen and water vapor, are also discussed. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water vapor absorption and desorption by poly (phenylene oxide) (PPO) and sulfonated PPO (SPPO) membranes were studied at a constant temperature of 30-degrees-C and over a broad range of water activity (0.05 less-than-or-equal-to a < 0.8) by the weighing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(2,6-dimethylphenylene oxide) (PPO) was sulfonated to varying degrees using different sulfonating agents. Physical properties such as solubility, density, and thermal properties were studied for both PPO and sulfonated PPO (SPPO) with different degree

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The permeation behaviors of water vapor and gases were studied for both PPO and SPPO of different sulfonation degree. It was found that the permeability of water vapor increased, and those of oxygen and nitrogen decreased; thus the selectivity for water v

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel sodium sulfonate-functionalized poly(ether ether ketone)s derived from 4,4'-thiodiphenol with degree of sulfonation up to 2.0 were synthesized by nucleophilic polycondensation of various amount of 5,5 '-carbonylbis(2-fluorobenzenesulfonate) (1) and 4,4'-difluorobenzophenone (2) with 4,4'-thiodipheno (3). Component and structure of the polymers were confirmed by TR, NMR and elemental analysis. Wide angle X-ray diffraction patterns indicated an amorphous structure of the polymers. All the polymers showed excellent thermal stability and poor solubility in water. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

氢渗透和拉应力的联合作用对海洋环境中的热浸镀钢材的安全构成潜在威 胁,本文以当前应用最广泛的三种商业化热浸镀钢材(热浸镀锌、锌-5%铝-稀土和锌-55%铝-1.6%硅)为研究对象,采用Devanathan-Stachurski双面电解池测试技术,测试了自渗氢电流密度曲线,研究了镀层与缺陷比例对氢渗透电流的影响,比较了镀层的氢渗透抑制性能及存在缺陷时的自渗氢能力,并结合镀层成分、结构及其腐蚀机理,探讨了其氢渗透机理;通过慢应变速率拉伸实验,获得了热浸镀钢材在不同充氢条件下的应力-应变曲线,比较了其力学性能参数,并配合断口的显微分析,评价了三种热浸镀钢材在海水中的氢脆敏感性,并对其氢脆机理进行了探讨。主要结果如下: (1) 热浸镀锌镀层的氢渗透抑制能力最弱,锌-5%铝-稀土镀层的氢渗透抑制能力较强,镀层存在缺陷时导致的阴极保护能促进氢渗透;锌-55%铝-1.6%硅镀层的氢渗透抑制能力最强,镀层存在缺陷时基本没有氢渗透电流。当镀层存在缺陷时,氢渗透电流密度的最大值随着镀层与暴露的钢材基体的面积比增大而增大。随着镀层中铝含量的增加,镀层结构越致密,镀层的耐腐蚀性能越好,完整镀层的氢渗透抑制能力越强,镀层存在缺陷时的自渗氢能力越弱。 (2) 热浸镀锌和锌-5%铝-稀土镀层钢材在海水中的氢渗透能明显降低材料的断后延伸率和能量密度,使其断裂方式由韧性转变为准解理;锌-55%铝-1.6%硅镀层在海水中对钢材基体进行阴极保护导致的氢渗透虽能显著降低其断后延伸率和能量密度,但其断裂方式以韧性为主,且断口存在局部的准解理撕裂形貌。随着预浸泡时间的增长,材料充氢量的增加,三种热浸镀钢材的氢脆敏感性提高。随着镀层铝含量的增加,热浸镀钢材在海水中的氢脆敏感性降低。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

硫酸盐还原菌(SRB)活动、拉应力和氢的联合作用将对海洋环境中热浸镀锌钢材构筑物的安全带来隐患。本文通过Devanathan-Stachurski双面电解池测试技术,检测了镀层完好及存在缺陷的热浸镀锌钢材在灭菌海水、灭菌培养基及接种SRB的培养基中的氢渗透电流曲线,探讨了镀层缺陷、培养基成分以及SRB对热浸镀锌钢材氢渗透行为的影响;采用电化学阻抗谱测试技术,研究了热浸镀锌钢材在上述介质中的腐蚀机制,并由此讨论了热浸镀锌钢材在不同条件下的氢渗透机制;通过慢应变速率拉伸试验(SSRT),获得了热浸镀锌钢材在不同腐蚀介质中的应力-应变曲线,比较了其力学性能参数,进而通过断口分析,评价了热浸镀锌钢材在灭菌海水、灭菌培养基及接种SRB培养基中的氢脆敏感性。研究结果表明: (1) 镀层出现缺陷将对热浸镀锌钢材的氢渗透行为起促进作用,这类试样在灭菌海水和灭菌培养基中的平均氢渗透电流密度比镀层完好试样在相同介质中的平均氢渗透电流密度分别提高了250.76%和32.76%;培养基组分对热浸镀锌钢材的氢渗透行为起促进作用,镀层存在缺陷和镀层完好的热浸镀锌钢材试样在灭菌培养基中的平均氢渗透电流密度分别比其在灭菌海水中高181.22%和626.97%;SRB对热浸镀锌钢材的氢渗透行为起抑制作用,镀层存在缺陷及镀层完好的热浸镀锌钢材试样在接种SRB的培养基中的平均氢渗透电流密度分别比灭菌培养基中低90.84%、77.14%。 (2) 电化学测试结果表明,培养基组分能够加速热浸镀锌钢材的腐蚀,使试样表面更容易形成腐蚀缺陷,从而增加其自渗氢能力;活性SRB本身对热浸镀锌钢材的腐蚀和氢渗透起促进作用,但在本文实验条件下,SRB及其代谢产物形成的生物膜以及腐蚀产物组成的致密膜层能够通过阻挡层作用抑制腐蚀,并阻止氢的进入;扫描电镜(SEM)分析结果表明,暴露于接种SRB培养基中的热浸镀锌钢材试样表面有致密的产物膜层,而灭菌培养基中的试样表面没有明显腐蚀产物膜存在。 (3) 培养基组分对热浸镀锌钢材氢渗透行为的促进作用增加了其对氢脆的敏感性,热浸镀锌钢材在灭菌培养基中的断后延伸率和能量密度比在灭菌海水中分别降低了4.97%和5.59%;SRB对热浸镀锌钢材氢渗透行为的抑制作用降低了其对氢脆的敏感性,热浸镀锌钢材在接种SRB的培养基中的断后延伸率和能量密度比其在灭菌培养基中分别高7.78%和8.44%。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ru(bpy)(3)(2+) electrochemiluminescence (ECL) method and electrocatalysis method were first used to study the ion-gate behavior of supported lipid bilayer membrane (sBLM). We found that sBLM, made of dimethyldioctadecylammonium bromide (a kind of synthetic lipid), showed ion-gate behavior for the permeation of Ru(bpy)(3)(2+) in the presence of perchlorate anion. There existed a threshold concentration (0.1 muM) of perchlorate anion for ion-gate opening. Below the threshold the ion-gate was closed. Above the threshold, the number of opened ion-gate sites increased with the increase of perchlorate anion concentration and leveled off at concentrations higher than 1200 muM. Based on it, a new sensor for perchlorate was developed. Furthermore, the opening and closing of the ion-gate behavior was reversible, which means the sensor can repeatedly be used.