9 resultados para PDO and PGI products
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A methodological survey of microsphere formation and microencapsulation techniques based on solvent extraction/evaporation techniques is presented. Thus, basic features of solvent extraction and solvent evaporation processes, including droplet formation, droplet/particle stabilization, and solvent removal, are outlined. Preparation of a wide range of microspherical and microcapsular products based on biodegradable polyesters, polysaccharides, and nonbiodegradable polymers are discussed. Dependence of microcapsule characteristics on manufacturing parameters, as well as performance evaluation of microspherical and microcapsular products, are also briefly covered.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
In the present study, one- and two-dimensional gel electrophoresis combined with high resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) have been applied as powerful approaches for the proteome analysis of surfactant proteins SP-A and SP-D, including identification of structurally modified and truncation forms, in bronchoalveolar lavage fluid from patients with cystic fibrosis, chronic bronchitis and pulmonary alveolar proteinosis. Highly sensitive micro preparation techniques were developed for matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS analysis which provided the identification of surfactant proteins at very low levels. Owing to the high resolution, FT-ICR MS was found to provide substantial advantages for the structural identification of surfactant proteins from complex biological matrices with high mass determination accuracy. Several protein bands corresponding to SP-A and SP-D were identified by MALDI-FT-ICR MS after electrophoretic separation by one- and two-dimensional gel electrophoresis, and provided the identification of structural modifications (hydroxy-proline) and degradation products.
Resumo:
The cyclization of cis-1,4 polybutadiene in various solvents (mesitylene,xylene, toluene,benzene and cyclohexane) with the catalyst composed of CH2=CHCH2Cl-AlEt2Cl was studied. The infrared spectra of the cyclized products were investigated. It was shown that the products produced in cyclohexane and mesitylene have infrared spectra identical with those of the original cis-1,4-polybutadiene and the products obtained in other aromatics have infrared spectra different from each other and distinguishing with those of the parent cis-1,4 polybutadiene. The analyses of infrared spectra came to the conclusion that the molecules of aromatic solvent participate in cyclization of cis-1,4 polybutadiene at the given condition. A possible reaction scheme involving an electrophilic substitution of carbonium ions for Ar-H of aromatic solvents was proposed. Some experimental facts were explained with great satisfaction on the basis of the above mechanism.
Resumo:
In an effort to develop genetic markers for oyster identification, we studied length polymorphism in internal transcribed spacers (ITS) between major ribosomal RNA genes in 12 common species of Ostreidae: Crassostrea virginica, C. rhizophorae, C. gigas, C. angulata, C. sikamea, C. ariakensis, C. hongkongensis, Saccostrea echinata, S. glomerata, Ostrea angasi, O. edulis, and O. conchaphila. We designed two pairs of primers and optimized PCR conditions for simultaneous amplification of ITS 1 and ITS2 in a single PCR. Amplification was successful in all 12 species, and PCR products were visualized on high-resolution agarose gels. ITS2 was longer than ITS 1 in all Crassostrea and Saccostrea species, whereas they were about the same size in the three Ostrea species. No intraspecific variation in ITS length was detected. Among species, the length of ITS I and ITS2 was polymorphic and provided unique identification of 8 species or species pairs: C. ariakensis, C. hongkongensis, C. sikamea, O. conchaphila, C. virginica/C. rhizophorae, C. gigas/C. angulata, S. echinata/S. glonzerata, and O. angasi/O. edulis. The ITS assay provides simple, rapid and effective identification of C. ariakensis and several other oyster species. Because the primer sequences are conserved, the ITS assay may be useful in the identification of other bivalve species.