75 resultados para PATTERN-RECOGNITION METHODS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Pattern recognition methods were applied to the analysis of 600 MHz H-1 NMR spectra of urine from rats dosed with compounds that induced organ-specific damage in the liver and kidney. Male Wistar rats were separated into groups (n=4) and each was treated with one of following compounds: HgCl2, CCl4, Lu(NO3)(3) and Changle (a kind of rare earth complex mixed with La, Ce, Pr and Nd). Urine samples from the rats dosed with HgCl2, CCl4 and Lu(NO3)(3) were collected over a 24 h time course and the samples from the rats administrated with Changle were gained after 3 months. These samples were measured by 600 MHz NMR spectroscopy. Each spectrum was data-processed to provide 223 intensity-related descriptors of spectra. Urine spectral data corresponding to the time intervals, 0-8 h (HgCl2 and CCl4), 4-8 (Lu(NO3)(3)) h and 90 d (Changle) were analyzed using principal component analysis (PCA). Successful classification of the toxicity and biochemical effects of Lu(NO3)(3) was achieved.
Resumo:
The relationship between structures of complex fluorides and spectral structure of Eu(II) ion in complex fluorides (AB(m)F(n)) is investigated by means of pattern recognition methods, such as KNN, ALKNN, BAYES, LLM, SIMCA and PCA. A learning set consisting of 32 f-f transition emission host compounds and 31 d-f transition emission host compounds and a test set consisting of 27 host compounds were characterized by 12 crystal structural parameters. These parameters, i.e. features, were reduced from 12 to 6 by multiple criteria for the classification of these host compounds as f-f transition emission or d-f transition emission. A recognition rate from 79.4 to 96.8% and prediction capabilities from 85.2 to 92.6% were obtained. According to the above results, the spectral structures of Eu(II) ion in seven unknown host lattices were predicted.
Resumo:
In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.
Resumo:
In this paper, a new classifier of speaker identification has been proposed, which is based on Biomimetic pattern recognition (BPR). Distinguished from traditional speaker recognition methods, such as DWT, HMM, GMM, SVM and so on, the proposed classifier is constructed by some finite sub-space which is reasonable covering of the points in high dimensional space according to distributing characteristic of speech feature points. It has been used in the system of speaker identification. Experiment results show that better effect could be obtained especially with lesser samples. Furthermore, the proposed classifier employs a much simpler modeling structure as compared to the GMM. In addition, the basic idea "cognition" of Biomimetic pattern recognition (BPR) results in no requirement of retraining the old system for enrolling new speakers.
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。
Resumo:
A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition. (C) 1996 Optical Society of America
Resumo:
Correct classification of different metabolic cycle stages to identification cell cycle is significant in both human development and clinical diagnostics. However, it has no perfect method has been reached in classification of metabolic cycle yet. This paper exploringly puts forward an automatic classification method of metabolic cycle based on Biomimetic pattern recognition (BPR). As to the three phases of yeast metabolic cycle, the correct classification rate reaches 90%, 100% and 100% respectively.
Resumo:
Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.
Resumo:
Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite manifold covering in biomimetic pattern recognition, and study its property. Furthermore, we propose this manifold covering algorithm based on Biomimetic Pattern Recognition. At last, the experimental results for face recognition demonstrates that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.
Resumo:
Based on biomimetic pattern recognition theory, we proposed a novel speaker-independent continuous speech keyword-spotting algorithm. Without endpoint detection and division, we can get the minimum distance curve between continuous speech samples and every keyword-training net through the dynamic searching to the feature-extracted continuous speech. Then we can count the number of the keywords by investigating the vale-value and the numbers of the vales in the curve. Experiments of small vocabulary continuous speech with various speaking rate have got good recognition results and proved the validity of the algorithm.
Resumo:
The mandarin keyword spotting system was investigated, and a new approach was proposed based on the principle of homology continuity and point location analysis in high-dimensional space geometry theory which are both parts of biomimetic pattern recognition theory. This approach constructed a hyper-polyhedron with sample points in the training set and calculated the distance between each test point and the hyper-polyhedron. The classification resulted from the value of those distances. The approach was tested by a speech database which was created by ourselves. The performance was compared with the classic HMM approach and the results show that the new approach is much better than HMM approach when the training data is not sufficient.
Resumo:
We studied the application of Biomimetic Pattern Recognition to speaker recognition. A speaker recognition neural network using network matching degree as criterion is proposed. It has been used in the system of text-dependent speaker recognition. Experimental results show that good effect could be obtained even with lesser samples. Furthermore, the misrecognition caused by untrained speakers occurring in testing could be controlled effectively. In addition, the basic idea "cognition" of Biomimetic Pattern Recognition results in no requirement of retraining the old system for enrolling new speakers.