4 resultados para PARTITIONING ENERGY PROVISION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24 +/- 1 degrees C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal-unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW(0.8386) explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To reveal the potential contribution of grassland ecosystems to climate change, we examined the energy exchange over an alpine Kobresia meadow on the northeastern Qinghai-Tibetan Plateau. The annual pattern of energy exchange showed a clear distinction between periods of frozen soil with the daily mean soil temperature at 5 cm (T-s5 ≤ 0 ° C) and non-frozen soil (T-s5 > 0 ° C). More than 80% of net radiation was converted to sensible heat (H) during the frozen soil period, but H varied considerably with the change in vegetation during the non-frozen soil period. Three different sub-periods were further distinguished for the later period: (1) the pre-growth period with Bowen ratio (β) > 1 was characterized by a high β of 3.0 in average and the rapid increase of net radiation associated with the increases of H, latent heat (LE) and soil heat; (2) during the Growth period when β ≤ 1, the LE was high but H fluxes was low with β changing between 0.3 and 0.4; (3) the post-growth period with average β of 3.6 when H increased again and reached a second maximum around early October. The seasonal pattern suggests that the phenology of the vegetation and the soil water content were the major factors affecting the energy partitioning in the alpine meadow ecosystem. © 2005 Elsevier B.V. All rights reserved.