9 resultados para Oxygen isotope fractionation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured delta C-13 of CO2, CH4, and acetate-methyl in profundal sediment of eutrophic Lake Dagow by incubation experiments in the presence and absence of methanogenic inhibitors chloroform, bromoethane sulfonate (BES), and methyl fluoride, which have different specificities. Methyl fluoride predominantly inhibits acetoclastic methanogenesis and affects hydrogenotrophic methanogenesis relatively little. Optimization of methyl fluoride concentrations resulted in complete inhibition of acetoclastic methanogenesis. Methane was then exclusively produced by hydrogenotrophic methanogenesis and thus allowed determination of the fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and allowed determination of the isotopic signatures of the fermentatively produced acetate. BES and chloroform also inhibited CH4 production and resulted in accumulation of acetate. The fractionation factor for hydrogenotrophic methanogenesis exhibited variability, e. g., it changed with sediment depth. The delta C-13 of the methyl group of the accumulated acetate was similar to the delta C-13 of sedimentary organic carbon, while that of the carboxyl group was by about 12 parts per thousand higher. However, the delta C-13 of the acetate was by about 5 parts per thousand lower in samples with uninhibited compared with inhibited acetoclastic methanogenesis, indicating unusual isotopic fractionation. The isotope data were used for calculation of the relative contribution of hydrogenotrophic vs. acetoclastic methanogenesis to total CH4 production. Contribution of hydrogenotrophic methanogenesis increased with sediment depth from about 35% to 60%, indicating that organic matter was only partially oxidized in deeper sediment layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktonic foraminiferal faunas, oxygen isotope and modern analog technique sea surface temperature records were obtained in piston core DGKS9603 (28degrees08.869'N, 127degrees16.238'E, water depth 1100 in) collected from the middle Okinawa Trough. During the last glaciation, four cold events were identified and correlate Heinrich events (HE) H2-5 of the last 45 ka. During the last deglaciation, core DGKS9603 has begun to be influenced by the Kuroshio since about 16 cal ka BP. Three weakenings of this warm current occurred at about 2.8-5.3, 11.4 and 15.5 cal ka BP respectively. Among the three fluctuations, the oldest one is synchronous with HE1 and could be a response to the strong cooling observed in the North Atlantic Ocean. The fluctuation occurring at about 11.4 cal ka ago corresponds to the Younger Dryas within the age error bars. Our observations provide new evidence that the HEs documented from Greenland and the northern North Atlantic had a global climatic impact. Changes in the intensity of the East Asian monsoon could be the main mechanism responsible for the paleoccanographic variations observed in the Okinawa Trough. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopes of N provide a new approach to the study of algal production in the ocean, yet knowledge of the isotope fractionation (epsilon) in various oceanic regimes is lacking. Here we report large and rapid changes in isotope composition (delta(15)N) of 2 coastal diatoms and 2 clones (open and coastal) of a coccolithophore grown in the simultaneous presence of nitrate, ammonium and urea under varying conditions of N availability (i.e. N-sufficiency and N-starvation followed by N-resupply) and hence different physiological states, During N-sufficiency, the delta(15)N of particulate organic N (PON) was well reproduced, using a model derived from Rayleigh distillation theory, with constant epsilon similar to that for growth on each individual N source. However, following N-resupply, the variations in delta(15)N(PON) could be well explained only in the case of the open ocean Emiliania huxleyi, with epsilon similar to N-sufficient conditions. It was concluded that the mechanism of isotope fractionation changed rapidly with N availability for the 3 coastal clones. However, in the case of E. huxleyi isolated from the Subarctic Pacific Ocean, no evidence of a change in mechanism was found, suggesting that perhaps open ocean species can quickly recover from N-depleted conditions.