5 resultados para OsRAA1
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
FPF1(flowering promoting factor1)蛋白最早在白芥中研究发现是开花促进因子, 可能参与了赤霉素的信号传导途径。它可以和AP1和LFY蛋白协同作用,促进茎顶端分生组织向花分生组织转化。本论文将AtFPF1基因转化水稻,转基因水稻抽穗时间只有微弱的提前。然而异源表达AtFPF1却抑制了转基因水稻根的生长,促进了成苗根系的发达。这些表型类似于我们克隆的水稻OsRAA1 (Oryza sativa Root Architecture Associated 1)的功能。这是首次报道AtFPF1/OsRAA1在水稻中具有控制根系发育的功能 生物信息学分析表明水稻OsRAA1基因定位于水稻1号染色体,它编码的蛋白推测分子量为12kD和AtFPF1有58%的同源。通过RNA原位杂交和OsRAA1基因启动子调控GUS基因表达的模式,证实OsRAA1基因主要在根尖的顶端分生区和伸长区,根尖分支区和幼侧根的中柱,侧根的原基表达。同时在幼穗分支顶端,根茎结合区的边周维管束,稃片,花药与花丝的结合区也有表达。OsRAA1在玉米泛素启动子驱动下组成型表达,可以抑制水稻初生根的生长,促进不定根的形成,部分植物形成不同程度螺旋状的初生根。这些表型和野生型水稻用生长素处理的表型类似。OsRAA1组成型表达,在成苗阶段,特别是孕穗前,大大促进叶片伸长,并导致部分小花败育。光学镜检表明OsRAA1组成型表达的水稻的花丝伸长过快,部分小花花药萎缩败育。剑叶表面细胞电镜扫描表明,OsRAA1组成型表达的水稻剑叶的硅化细胞比对照植株要长。野生型水稻根系生长素处理的Northern杂交和OsRAA1基因启动子调控GUS基因表达的水稻生长素处理后GUS活性染色表明,OsRAA1基因的转录受生长素诱导。而且OsRAA1组成型表达的水稻根的向地性反应减缓。这些结果表明,OsRAA1可能参与了生长素的信号转导途径。 与此同时,从基因序列数据库中,在很多植物中寻找到很多表达片段和FPF1/OsRAA1基因同源。从已有报道和我们的结果表明,在植物中可能普遍存在一个受赤霉素和生长素调控FPF1/OsRAA1基因家族,调控着植物各个器官的发育。
Resumo:
内质网中一些可溶性蛋白含有Lys-Asp-Glu-Leu(KDEL)基序作为内质网滞留的信号,这些内质网滞留蛋白可以离开内质网进入高尔基体进行糖基化修饰。目前的研究表明,KDEL基序可以被滞留蛋白受体识别,通过反向运输途径将其运回内质网。ERD2是第一个在酵母中被鉴定的内质网滞留蛋白受体。在人、拟南芥、弓形虫等生物中也鉴定出类似的内质网滞留蛋白受体。ERD2在拟南芥中的同源基因aERD2受内质网胁迫信号的诱导,在水稻中还未见该类受体的报道。 本工作从水稻中克隆到ERD2的同源基因OsERD2。OsERD2的cDNA全长为1081bp,编码一含215个氨基酸的蛋白。OsERD2与酵母、拟南芥、人中的内质网滞留蛋白受体的同源性分别为43.38%、72.56%、54.42%。疏水性分析显示该蛋白具有7个跨膜区;OsERD2呈组成型表达模式;亚细胞定位显示OsERD2主要分布于高尔基体中;利用酵母互补实验证明OsERD2可以恢复酵母erd2缺失突变体的表型。这些结果表明,OsERD2是水稻中的内质网滞留蛋白受体。 借助农杆菌介导的转化将OsERD2在水稻中超表达,分析转基因水稻对二硫苏糖醇(DTT)处理的响应。结果显示DTT处理抑制水稻幼苗生长,超表达OsERD2株系受抑制程度更为明显。表明OsERD2转基因水稻对内质网胁迫更加敏感。因此,OsERD2可能参与了水稻中的未折叠蛋白响应。 本论文还比较分析了OsRAA1/AtFPF1的一些新功能。OsRAA1(Oryza sativa root architecture associated 1)是拟南芥AtFPF1在水稻中的同源基因,参与水稻根发育的调控。我们将OsRAA1在拟南芥中异源超表达,发现OsRAA1的积累使转基因拟南芥的开花时间提前,同时发现在白光条件下转基因拟南芥的下胚轴长度增加。进一步分析表明,在蓝光、远红光和黑暗条件下转OsRAA1拟南芥下胚轴长度和野生型没有明显区别,但在红光条件下,转基因拟南芥的下胚轴长度是野生型的两倍。AtFPF1转基因拟南芥也表现出类似的表型,说明RAA1/FPF1蛋白不但可以调控拟南芥开花时间而且参与红光对下胚轴生长的光抑制过程,它们在进化过程中保留了这两个方面的功能。
Resumo:
实验室前期工作证明OsRAA1在玉米泛素启动子驱动下组成型表达,可以抑制水稻初生根的生长,促进不定根的形成,形成不同程度螺旋状的初生根,根的向地性反应减缓,这些表型和野生型水稻用生长素处理的表型类似,而且OsRAA1基因的转录受生长素诱导,这些结果表明OsRAA1可能参与了生长素的信号转导途径。但这些表型产生的机理还不是很清楚。在水稻中,茉莉酸在根发育过程中的作用多为生理实验的报道;拟南芥中的研究表明生长素信号转导和茉莉酸信号转导可能都受26S蛋白酶体的调控。由此我们推测茉莉酸在根的发育过程中可能也起着同样的促进作用。本论文在超表达OsRAA1水稻基础上旨在克隆新基因,并对新基因功能进行研究,以探讨茉莉酸在水稻根发育过程中的分子机理,并对生长素和茉莉酸信号转导的关系进行探讨。 首先运用双向电泳技术结合质谱分析技术,在超表达OsRAA1水稻背景下发现了受体激酶家族DUF26的一个成员明显下调,我们命名为OsRMC(Oryza sativa Root Meander and Curling,AAL87185),Western杂交进一步证明了这个结果。 OsRMC位于4号染色体,信息学分析表明只有一个拷贝,没有内含子,ORF阅读框为777bp,编码的蛋白分子量为27.9 kDa,等电点(pI)为5.01。对该蛋白进行同源性比较发现,其含有2个C-X8-C-X2-C基序(Cys-rich repeat, CRR)即半胱氨酸富集区,其中第四个半胱氨酸残基不保守,该基序会形成二硫键,编码两个未知功能的DUF26(Domain Unknown Function 26)结构域。OsRMC由一个信号肽和两个CRR区组成,但没有跨膜区和激酶区。RT-PCR显示OsRMC可能是组成型表达的基因;亚细胞实验表明OsRMC是膜定位的蛋白。Western blot显示OsRMC受茉莉酸诱导表达,受生长素的抑制。 RNAiOsRMC转基因水稻在暗处培养时,抑制了初生根的生长,使侧根数目减少,但促进了不定根的生长和数目的增加;第二叶鞘变短,这些表型和前人报道的外源茉莉酸处理野生型的表型一致。转基因对生长素信号转导和合成没有影响,但初生根和第二叶鞘对外源茉莉酸更加敏感,说明RNAiOsRMC转基因水稻可能增强了茉莉酸信号转导途径。分析转基因水稻的茉莉酸信号转导途径部分相关基因的表达变化,根中受茉莉酸信号转导特异诱导的病原相关基因RSOsPR10的表达明显增多,而JAmyb和OsNDPK1的表达没有变化,证实转基因增强了茉莉酸信号转导其中的一个路径;进一步分析茉莉酸合成途径12-OXO-PDA(12-氧代-顺,顺-10,15-植物二烯酸)还原酶基因OsOPR的表达发现与野生型没有明显差别,说明转基因可能没有影响体内的茉莉酸合成途径。RNAiOsRMC转基因水稻的初生根比野生型的更容易发生弯曲,实验表明培养过程中茉莉酸和背触反应(negative thigmotropism)共同作用使转基因的初生根更容易发生卷曲,而光信号会增强卷曲程度。但RNAiOsRMC转基因水稻并没有影响根的向地性,暗示RNAiOsRMC转基因可能增强了根的回旋运动或(和)背触反应,从而促进了根的弯曲和卷曲。这些结果证明OsRMC参与的茉莉酸信号转导过程在水稻根的发育、弯曲和卷曲过程中起着重要的促进作用。通过对超表达OsRAA1和RNAiOsRMC转基因水稻的分析,说明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径。 综合以上实验结果认为,OsRAA1调控了受体激酶家族DUF26的一个成员OsRMC,使其表达量降低,该过程增强了茉莉酸信号转导途径;确认了受体激酶家族DUF26的基因具有重要的生物学功能,证实了OsRMC调控的茉莉酸信号转导在水稻根系发育、根弯曲和卷曲过程中具有重要的促进作用;证明水稻中存在着生长素信号转导促进茉莉酸信号转导的途径,为完善各种植物激素调控水稻根系发育的网络提供了新的实验证据。