15 resultados para Organizational potential for change

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nearest-neighbour Lennard-Jones potential from the embedded-atom method is extended to a form that includes more than nearest neighbours. The model has been applied to study melting with molecular dynamics. The calculated melting point, fractional volume change on melting, heat of fusion and linear coefficients of thermal expansion are in good agreement with experimental data. We have found that the second and third neighbours influence the melting point distinctly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many diseases are believed to be related to abnormal protein folding. In the first step of such pathogenic structural changes, misfolding occurs in regions important for the stability of the native structure. This destabilizes the normal protein conformation, while exposing the previously hidden aggregation-prone regions, leading to subsequent errors in the folding pathway. Sites involved in this first stage can be deemed switch regions of the protein, and can represent perfect binding targets for drugs to block the abnormal folding pathway and prevent pathogenic conformational changes. In this study, a prediction algorithm for the switch regions responsible for the start of pathogenic structural changes is introduced. With an accuracy of 94%, this algorithm can successfully find short segments covering sites significant in triggering conformational diseases (CDs) and is the first that can predict switch regions for various CDs. To illustrate its effectiveness in dealing with urgent public health problems, the reason of the increased pathogenicity of H5N1 influenza virus is analyzed; the mechanisms of the pandemic swine-origin 2009 A(H1N1) influenza virus in overcoming species barriers and in infecting large number of potential patients are also suggested. It is shown that the algorithm is a potential tool useful in the study of the pathology of CDs because: (1) it can identify the origin of pathogenic structural conversion with high sensitivity and specificity, and (2) it provides an ideal target for clinical treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the IBUU transport model, flipping of the symmetry potential in heavy-ion collisions is studied. It is found that there exist flipping of the symmetry potential in the isospin fractionation, the single neutron to proton ratio, the double neutron to proton ratio and the neutron-proton differential flow from lower to higher incident energies. The flipping of the symmetry potential results from the change of the relative magnitude of the hard and soft symmetry energies at lower and higher densities. Future observations of the flipped symmetry potential in experiment will help the study of the density-dependent symmetry energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For thermal energy storage application, polyurea microcapsules about 2.5 mum in diameter containing phase change material were prepared using interfacial polycondensation method. In the system droplets in microns are first formed by emulsifying an organic phase consisting of a core material ( n-hexadecane) and an oil-soluble reactive monomer, toluene-2, 4-diisocyanate (TDI), in an aqueous phase. By adding water-soluble reactive monomer, diamine, monomers TDI and diamine react with each other at the interface of micelles to become a shell. Ethylenediamine (EDA), 1, 6-hexane diamine (HDA) and their mixture were employed as water-soluble reactive monomers. The effects of diamine type on chemical structure and thermal properties of the microcapsules were investigated by FT-IR and thermal analysis respectively. The infrared spectra indicate that polyurea microcapsules have been successfully synthesized; all the TG thermographs show microcapsules containing n-hexadecane can sustain high temperature about 300 degreesC without broken and the DSC measurements display that all samples possess a moderate heat of phase transition; thermal cyclic tests show that the encapsulated paraffin kept its energy storage capacity even after 50 cycles of operation. The results obtained from experiments show that the encapsulated n-hexadecane possesses a good potential as a thermal energy storage material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

China's cultivated land has been undergoing dramatic changes along with its rapidly growing economy and population. The impacts of land use transformation on food production at the national scale, however, have been poorly understood due to the lack of detailed spatially explicit agricultural productivity information on cropland change and crop productivity. This study evaluates the effect of the cropland transformation on agricultural productivity by combining the land use data of China for the period of 1990-2000 from TM images and a satellite-based NPP (net primary production) model driven with NOAH/AVHRR data. The cropland area of China has a net increase of 2.79 Mha in the study period, which causes a slightly increased agricultural productivity (6.96 Mt C) at the national level. Although the newly cultivated lands compensated for the loss from urban expansion, but the contribution to production is insignificant because of the low productivity. The decrease in crop production resulting from urban expansion is about twice of that from abandonment of arable lands to forests and grasslands. The productivity of arable lands occupied by urban expansion was 80% higher than that of the newly cultivated lands in the regions with unfavorable natural conditions. Significance of cropland transformation impacts is spatially diverse with the differences in land use change intensity and land productivity across China. The increase in arable land area and yet decline in land quality may reduce the production potential and sustainability of China's agro-ecosystems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using meteorological data and RS dynamic land-use observation data set, the potential land productivity that is limited by solar radiation and temperature is estimated and the impacts of recent LUCC processes on it are analyzed in this paper. The results show that the influence of LUCC processes on potential land productivity change has extensive and unbalanced characteristics. It generally reduces the productivity in South China and increases it in North China, and the overall effect is increasing the total productivity by 26.22 million tons. The farmland reclamation and original farmlands losses are the primary causes that led potential land productivity to change. The reclamation mostly distributed in arable-pasture and arable-forest transitional zones and oasises in northwestern China has made total productivity increase by 83.35 million tons, accounting for 3.50% of the overall output. The losses of original farmlands driven by built-up areas invading and occupying arable land are mostly distributed in the regions which have rapid economic development, e.g. Huang-Huai-Hai plain, Yangtze River delta, Zhujiang delta, central part of Gansu, southeast coastal region, southeast of Sichuan Basin and Urumqi-Shihezi. It has led the total productivity to decrease 57.13 million tons, which is 2.40% of the overall output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactant adsorption on metal surfaces has been used to limit the activity of the electrode surface and to stabilize colloidal clusters and nanoparticles in solution, but the adsorption and relative potential-induced structure change of the surfactant were not known. Here, the adsorption of sodium dodecyl sulfate (SDS) on a Au(111) surface under potential control was investigated by in situ scanning tunneling microscopy (STM). The STM images showed that the morphology of SDS on Au(111) was changed from a hemi-cylindrical micellar monolayer to a compact and uniform bilayer through control of the potential. The transition between the hemimicellar monolayer and the compact bilayer is not reversed after a period of time. The model of potential-induced transformation for SDS aggregates on Au(111) was established. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The changes of corrosion potential (E-corr) of metals immersed in seawater were investigated with electrochemical technology and epifluoresence microscopy. In natural seawater, changes of E-corr were determined by the surface corrosion state of the metal. E-corr of passive metals exposed to natural seawater shifted to noble direction for about 150 mV in one day and it didn't change in sterile seawater. The in-situ observation showed that biofilms settled on the surfaces of passive metals when E-corr moved in noble direction. The bacteria number increased on the metal surface according to exponential law and it was in the same way with the ennoblement of E-corr. The attachment of bacteria during the initial period played an important role in the ennoblement of E-corr and it is believed that the carbohydrate and protein in the biofilm are reasons for this phenomenon. The double layer capacitance (C-dl) of passive metals decreased with time when immersed in natural seawater, while remained almost unchanged in sterile seawater. The increased thickness and reduced dielectric constant of C-dl may be reasons.