485 resultados para Organically modified electrolytes

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is focused on the factors influencing the intercalation of maleated polypropylene (PPMA) into organically modified montmorillonite (OMMT). Two kinds of PPMA were used to explore the optimal candidate for effective intercalation into OMMT. The grafting degree of maleic anhydride and the viscosity of PPMA have effects on the diffusion of polymer molecules. Moreover, the loading level of surfactant was varied to optimize the modification of montmorillonite because the appropriate loading level can provide a balance between interlayer distance and steric hindrance. The kind of surfactant changes the interaction between OMMT and PPMA, and accordingly the intercalation of PPMA is different, resulting in the discrepancy of the intercalation of PPMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation and flame retardancy of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposite were studied by means of gas chromatography-mass spectrometry and cone calorimeter. The catalysis of hydrogen proton containing montmorillonite (H-MMT) derived from thermal decomposition of (alkyl) ammonium in the OMMT on degradation of PP strongly influence carbonization behavior of PP and then flame retardancy. Bronsted acid sites on the H-MMT could catalyze degradation reaction of PP via cationic mechanism, which leads to the formation of char during combustion of PP via hydride transfer reaction. A continuous carbonaceous MMT-rich char on the surface of the burned residues, which work as a protective barrier to heat and mass transfer, results from the homogeneous dispersion of OMMT in the PP matrix and appropriate char produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organically modified silica xerogels (OMSX) and Eu3+ (Tb3+)-doped OMSX were prepared by the reaction of (3-aminopropyl) triethoxysilane (APS) with 3-isocyanatepropyltriethoxysilane (ICPTES) followed by the subsequent hydrolysis and condensation in the presence of Eu3+ (Tb3+) via sol-gel method, which were characterized by FT-IR, XRD, fluorescence excitation and emission spectra. The as-formed OMSX shows a strong blue emission with the maximum excitation and emission wavelength at 351 and 420 nm, respectively. Due to the spectral overlap between the emission band of OMSX and f-f absorption lines of Eu3+ and Tb3+ in the UV-blue region, an energy transfer was observed from OMSX host to Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. Excitation at 350-360 nm resulted in a very weak emission around 420 nm from OMSX host and strong emission of Eu3+ and Tb3+ in OMSX/Eu3+ and OMSX/Tb3+, respectively. The emission spectra of Eu3+ and Tb3+ consist of D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4) and D-5(4)-F-7(J) (J = 6, 5, 4, 3), respectively. Furthermore, the predicted structure of OMSX/Eu3+ and OMSX/Tb3+ is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New nanocomposites were prepared by melt blending poly(L-lactide) (PLLA), poly(epsilon-caprolactone) (PCL), and organically modified montmorillonite (OMMT). The obtained nanocomposites showed enhanced tensile strength, modulus and elongation at break than that of PLLA/PCL blends. The dynamic mechanical analysis showed the increasing mechanical properties with temperature dependence of nanocomposites. Wide-angle X-ray diffraction analysis and transmission electron microscopy indicated that the material formed the nanostructure. Adding OMMT improved the thermal stability and crystalline abilities of nanocomposites. The morphology was investigated by environmental scanning electron microscopy, which showed that increasing content of OMMT reduces the domain size of phase-separated particles. The specific interaction between each polymer and OMMT was characterized by the Flory-Huggins interaction parameter, B, which was determined by the equilibrium melting point depression of nanocomposites. The final values of B showed that PLLA was more compatible with OMMT than PCL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene (PP)/organically modified montmorillonite (OMMT) nanocomposites. The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation. The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis (TGA). The structural evolution and composition change in the surface region of PP/OMMT nanocomposites during heating were monitored by means of X-ray photoelectron spectroscopy (XPS), ATR-FTIR and field emission scanning electron microscopy (FESEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ordered N-methylimidazolium functionalized mesoporous silica (SBA-15) anion exchangers were directly synthesized by co-condensation of tetraethoxysilane with 1-methyl-3(triethoxysilylpropyl)imidazolium chloride. The prepared samples with rod-like morphology showed high surface areas (> 400 m(2) g(-1)), well-ordered pores (> 58 angstrom), and excellent thermal stability up to 387 degrees C. The adsorption behaviors of Cr(VI) from aqueous solution on the anion exchangers were studied using the batch method. The anion exchangers had high adsorption capacity ranging from 50.8 to 90.5 mg g(-1), over a wider pH range (1-8) than amino functionalized mesoporous silica. The adsorption rate was fast, and the maximum adsorption was obtained at pH 4.6. The adsorption data for the anion exchangers were consistent with the Langmuir isotherm equation. Most active sites of the anion exchangers were easily accessible. The mixed solution of 0.1 mol L-1 NH3 center dot H2O and 0.5 mol L-1 NH4Cl was effective desorption solution, and 95% of Cr(VI) could be desorbed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.