10 resultados para Organelles

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to its medical importance as parasitic pathogen, Entamoeba has aroused people's interest in its evolutionary status for a long time. Lacking mitochondrion and other intracellular organelles common to typical eukaryotes, Entamoeba and several other amitochondrial protozoans have been recognized as ancient pre-mitochondriate eukaryotes and named "archezoa", the most primitive extant eukaryotes. It was suggested that they might be living fossils that remained in a primitive stage of evolution before acquisition of organelles, lying close to the transition between prokaryotes and eukaryotes. However, recent studies revealed that Entamoeba contained an organelle, "crypton" or "mitosome", which was regarded as specialized or reductive mitochondrion. Relative molecular phylogenetic analyses also indicated the existence or the probable existence of mitochondrion in Entamoeba. Our phylogenetic analysis based on DNA topoisomerase II strongly suggested its divergence after some mitchondriate eukaryotes. Here, all these recent researches are reviewed and the evolutionary status of Entamoeba is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, Entamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group - Archezoa. The main evidence for this is their 'lacking mitochondria' and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase 11 in G lamblia, T vaginalis and E histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase 11 make it avoid the defect of 'long-branch attraction' appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be polyphyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genes encoding type II DNA topoisomerases were investigated in Giardia lamblia genome, and a type IIA gene, GlTop 2 was identified. It is a single copy gene with a 4476 by long ORF without intron. The deduced amino acid sequence shows strong homology to eukaryotic DNA Top 2. However, some distortions were found, such as six insertions in the ATPase domain and the central domain, a similar to 100 as longer central domain; a similar to 200 as shorter C-terminal domain containing rich charged residues. These features revealed by comparing with Top 2 of the host, human, might be helpful in exploiting drug selectivity for antigiardial therapy. Phylogenetic analysis of eukaryotic enzymes showed that kinetoplastids, plants, fungi, and animals were monophyletic groups, and the animal and fungi lineages shared a more recent common ancestor than either did with the plant lineage; microsporidia grouped with fungi. However, unlike many previous phylogenetic analyses, the "amitochondriate" G. lamblia was not the earliest branch but diverged after mitochondriate kinetoplastids in our trees. Both the finding of typical eukaryotic type IIA topoisomerase and the phylogenetic analysis suggest G. lamblia is not possibly as primitive as was regarded before and might diverge after the acquisition of mitochondria. This is consistent with the recent discovery of mitochondrial remnant organelles in G. lamblia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructure of the bloodstream forms of Trypanosoma pseudobagri from its natural host, yellow catfish (Pseudobagrus fulvidraco), a freshwater fish, is described in the present work. The pellicle, consisting of a unit membrane with a superimposed surface coat, the structure and attachment of the flagellum and the subpellicular microtubules show the usual structural and organizational features. Cell organelles and cytoplasmic inclusions such as kinetoplast, mitochondria, nucleus and vacuoles, which occur in trypanosomidae, are observed and described in detail. The ultrastructure of T. pseudobagri has been compared with that of bloodstream forms of other species and culture forms of fish trypanosomes, and similarities and divergences are discussed. The Golgi-complex and endoplasmic reticulum could not be observed and need further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytological and biochemical alterations of crucial carp (Carassius auratus) hepatocytes were characterized after exposure to sediments from a lake contaminated with dioxins and other industrial chemicals. Carp were exposed in 20 L water containing 25, 50, or 100 g of contaminated sediment for 2 and 4 weeks. Ultrastructural changes in the liver were characterized by severe enlargement of hepatocytes. Alterations in the cell. included formation of condensed and irregular cell nucleus, polynuclei, dispersed heterochromatin, enlargement of the nucleolus, and degeneration of the nucleus. Mitochondrial numbers were reduced and cristae were deformed. Myelin figures and lysosomes were increased, and sometimes cell organelles and cell matrix were totally lost after 4 weeks of exposure. The ultrastructural alterations were correlated with exposure time and sediment concentrations. Hepatosometic index was significantly increased in experimental groups at 2 and 4 weeks as compared with the control group. EROD enzyme activities were strongly induced in liver. A trend from rough endoplasmic reticulum (RER) to SER was observed. Our results suggest that the dioxin-like compounds bound by sediment were bioavailable to C. auratus and cause sublethal effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chloroplasts, mitochondria, and protoplasm devoid of mature chloroplasts (PMC) of Bryopsis hypnoides Lamouroux were isolated by low-speed and sucrose density centrifugation. The PMC aggregated in artificial seawater, and then protoplasts without mature chloroplasts (PtMCs) were formed. Transmission electron microscopy and cytochemical studies indicated that there were mitochondria, nuclei, vesicles, and other small cell organelles in the PtMCs. Scanning electron microscopy showed that there were holes on the surface of 1-h PtMCs and then fewer holes on the surface of 24-h PtMCs, suggesting that a healing process occurred. The plasma membrane was formed over the surface of the PtMCs. However, the cell wall was not regenerated, and the newly formed PtMCs were ruptured and died in 3 days. Light intensity during alga maintenance before use influenced significantly (one-way ANOVA, P < 0.0001) on the number of PtMCs formed; the highest number of PtMCs was formed at 20A mu mol/(m(2) s). When isolated chloroplasts were transferred into seawater, there were only two or three chloroplasts aggregated together. However, isolated mitochondria and the mixed six layers of cell organelles (separated by sucrose density centrifugation) could not aggregate in the artificial seawater. This indicates that the conjunction of cell organelles is important for their aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the. presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml(-1)). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue culture, SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and spectra analysis were used for studying the aggregation mechanism of protoplasts from Bryopsis hypnoides Lamouroux and the discrepancy between the protoplast-regenerated plants and the wild type. The aggregation of protoplasts from B. hypnoides was observed in natural seawater and artificial seawater with different pH values, and the location and mechanism of the materials causing the aggregation were also studied. Results showed that the protoplasts could aggregate into some viable spheres in natural seawater and subsequently grow into mature individuals. Aggregation of the protoplasts depended exclusively upon the pH value (6-11), and the protoplasts aggregated best at pH 8-9. Some of the extruded protoplasts were separated into two parts by centrifugation: the pellet (PO) and the supernatant (PL). The PO could aggregate in artificial seawater (pH 8.3) but not in PL. No aggregation was found in PO cultured in natural seawater containing nigericin, which can dissipate the proton gradients across the membrane. These experiments suggest that the aggregation of protoplasts is proton-gradient dependent and the materials causing the aggregation were not in the vacuolar sap, but located on the surface or inside the organelles. Furthermore, the transfer of the materials across the membrane was similar to Delta pH-based translocation (Delta pH/TAT) pathway that occurs in the chloroplasts of higher plants and bacteria. Obvious discrepancies in both the total soluble proteins and the ratio of chlorophyll a to chlorophyll b between the regenerated B. hypnoides and the wild type were found, which may be related to the exchange of genetic material during aggregation of the organelles. In the process of development, diatom Amphora coffeaeformis Agardh attached to the protoplast aggregations, retarding their further development, and once they were removed, the aggregations immediately germinated, which showed that diatoms can affect the development of other algae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell organelles of the coenocytic alga Codium fragile (Sur.) Hariot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were long and gelatinous threads connecting the cell organelles. The threads contracted, and thus the cell organelles aggregated into protoplasmic masses. The enzyme digestion experiments and Coomassie Brilliant Blue and Anthrone stainings showed that the long and gelatinous threads involved in the formation of the protoplasts might include protein and saccharides as structure components. Nile Red staining indicated that the protoplast primary envelope was non-lipid at first, and then lipid materials integrated into its surface gradually. The fluorescent brightener staining indicated that the cell wall did not regenerate in the newly formed protoplasts and they all disintegrated within 72 h after formation. Transmission electron microscopy of the cell wall of wild C. fragile showed electron-dense material embedded in the whole cell wall at regular intervals. The experiments indicated that C. fragile would be a suitable model alga for studying the formation of protoplasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute peristome edema disease (APED) is a new disease that broke out in cultured sea cucumber along the Shangdong and Liaoning province coasts in China, PR, and has caused a great deal of death in Apostichopus japonicus (Selenka) since 2004. Here we report virus-like particles found in intestine epithelium of sea cucumbers reared in North China. It is the first time that sea cucumbers are reported to be infected by virus. Histological examinations showed that the viral inclusion bodies existed in intestine epithelium cells. Electron microscopic examinations show that the virions were spherical, 80-100 nm in diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Detailed studies on the morphogenesis of these viruses found many characteristics previously described for coronaviruses. Virus particles always congregated, and formed a virus vesicle with an encircling membrane. The most obvious cellular pathologic feature is large granular areas of cytoplasm, relatively devoid of organelles. Tubular structures within virus-containing vesicles, nucleocapsid inclusions, and double-membrane vesicles are also found in the cytopathic cells. No rickettsia, chlamydia, bacteria, or other parasitic organisms were found. (c) 2007 Elsevier Inc. All rights reserved.