24 resultados para One parameter family
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results are found. A n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV if it admits a one-parameter symmetry group that is spatial and divergenceless. More generally, a n-dimensional DFV admitting a r-parameter, spatial, divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n - r)-dimensional DFV.
Resumo:
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.
Resumo:
A complete development for the higher-order asymptotic solutions of the crack tip fields and finite element calculations for mode I loading of hardening materials in plane strain are performed. The results show that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. These coefficients are determined by matching with the finite element solutions carried out in the present paper (our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic characterization of crack tip fields, which conform very well to the finite element solutions over wide range. A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two curves agree with most of the experimental data and fully capture the proper trend.
Resumo:
讨论了单参数连续流的基本性质,并给出了关于单参数连续流为极小流和单参数连续半流为极小流的充分条件。
Resumo:
We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.
Resumo:
The optimal entanglement manipulation for a single copy of mixed states of two qubits is to transform it to a Bell diagonal state. In this paper we derive an explicit form of the local operation that can realize such a transformation. The result obtained is universal for arbitrary entangled two-qubit states and it discloses that the corresponding local filter is not unique for density matrices with rank n = 2 and can be exclusively determined for that with n = 3 and 4. As illustrations, a four-parameter family of mixed states are explored, the local filter as well as the transformation probability are given explicitly, which verify the validity of the general result.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.
Resumo:
The gene of piscidin, an antimicrobial peptide, has been cloned from the mandarin fish, Siniperca chuatsi. From the first transcription initiation site, the mandarin fish piscidin gene extends 1693 nucleotides to the end of the 3' untranslated region and contains four exons and three introns. A predicted 79-residue prepropeptide consists of three domains: a signal peptide (22 aa), a mature peptide (22 aa) and a C-terminal prodomain (35 aa). The shortage of XQQ motif in the prodomain of mandarin fish piscidin and the similar gene structure between moronecidins (piscidins) and pleurocidins may indicate that they are derived from the same ancestor gene. We thus suggest that piscidin should be used as a terminology for these antimicrobial peptides in the future. The mandarin fish piscidin mRNA was abundant in intestine, spleen, pronephros and kidney analysed by real-time polymerase chain reaction. After stimulation with lipopoly saccharides (LPS), a marked increase in transcripts was observed in most tissues, indicating that piscidin is not only a constitutively expressed molecule, but also has an increased response to bacterial infection. The synthetic, amidated mandarin fish piscidin exhibited different antimicrobial activity against different fish bacterial pathogens, especially against species of Aeromonas, which may to certain extent reflect the pathogenicity of these bacteria.
Resumo:
A material model, whose framework is parallel spring-bundles oriented in 3-D space, is proposed. Based on a discussion of the discrete schemes and optimum discretization of the solid angles, a 3-D network cell consisted of one-dimensional components is developed with its geometrical and physical parameters calibrated. It is proved that the 3-D network model is able to exactly simulate materials with arbitrary Poisson ratio from 0 to 1/2, breaking through the limit that the previous models in the literature are only suitable for materials with Poisson ratio from 0 to 1/3. A simplified model is also proposed to realize high computation accuracy within low computation cost. Examples demonstrate that the 3-D network model has particular superiority in the simulation of short-fiber reinforced composites.
Resumo:
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
Resumo:
Background: Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and
Resumo:
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-g