110 resultados para Oil well logging, Electric.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low resistivity reservoir is a special reservoir which is different from normal reservoir in identification and evaluation.Through core experiment and analysis, the achievement of which resistivity is resulted from clay additive electric conductivities and high bound water saturation in Junggar basin is gained. For accurately evaluating low resistivity, a good many of experiment have been completed, such as resistivity index and formation factor in hi^jher temperature and higher pressure, semi-permeability board, cation exchange, bound water, NMR (nucleus magnetism response), non-Nad water in different temperature and salinity, the experiments result show that lower resistivity has complex relation with these electric-parameters and chloric ion content in non-NaCl water.Based on comprehensive interpretation of NMR and normal resistivity data, the volume of moved water, bound water, moved oil and residual oil in the strata can be determined quantitatively and which have significant influence on reservoir recognition and perforation optimized.Experiment data (SEM mold, thin section, X ray diffraction, mercury penetration) can be used to analysis low resistivity forming and the relation between low resistivity and pore texture, to set up relation between porosity, permeability and petrophysical property. The reservoir was sorted, evaluated and described. The oil bedding in southern margin of Junggar basin is low porosity, low resistivity reservoir.Based on invasion theory of electric well-logging, modelling and inversion of resistivity well-logging are accomplished. For enhancing low resistivity resulted from higher bound water saturation and cation exchange, invasion period, invasion radius, the relation between fluid distribution in pore and response of laterolog logging have been studied. Virgin zone resistivity, invasion zone resistivity and invasion radius were inversed and which enhanced evaluation accuracy of reservoir. The method was used to process well-logging data in Luliang oilfield and southern margin in Junggar basin, and reservoir resistivity was enhanced effectively, appropriate oil saturation gained and it has better effect on oil exploration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lithology of the buried hill of Triassic Budate group in Beier depression is epimetamorphic clastic rock and volcanic clastic rock stratum. Recently the favorable hydrocarbon show was discovered in buried hill of base rock, and large-duty industrial oil stream was obtained in some wells in Beier depression. Based on the information of seismos and wells, the tectonic framework, tectonic deformation times and faulted system of the Beier depression are comprehensively studied, then configuration, evolutional history, genetic type and distributed regularity of buried hill are defined. According to observing description and analysis of core sample, well logging and interpretive result of FMI, the lithological component, diagenetic type and diagenetic sequence of buried hill reservoir are confirmed, then reservoir space system of buried hill is distinguished, and vegetal feature, genetic mechanism and distributed regularity of buried hill fissure are researched, at the same time the quantitative relationship is build up between core fissures and fissures interpreted by FMI. After that fundamental supervisory action of fault is defined to the vegetal degree of fissure, and the fissure beneficial places are forecasted using fractal theory and approach. At last the beneficial areas of Budate group reservoir are forecasted by reservoir appraisal parameters optimization such as multivariate gradually regression analysis et. al. and reservoir comprehensive appraisal method such as weighing analyze and clustering procedure et. al. which can provide foundation for the next exploratory disposition. Such production and knowledge are obtained in this text as those: 1. Four structural layers and two faulting systems are developed, and four structural layers are carved up by three bed succession boundary surfaces which creates three tectonic distortional times homology. Three types of buried hill are divided, they are ancient physiognomy buried hill, epigenetic buried hill, and contemporaneous buried hill. 2. Reservoir space of Budate buried hill is mainly secondary pore space and fissure, which distributes near the unconformity and/or inside buried hill in sections. The buried hill reservoir experienced multi-type and multi-stage diagenetic reconstruction, which led to the original porosity disappeared, and multi secondary porosity was created by dissolution, superficial clastation and cataclasis et. al. in diagenetic stage, which including middle crystal pore, inter crystal pore, moldic pore, inter particle emposieu, corrosion pore space and fissure et. al. which improved distinctly reservoir capability of buried hill. 3. The inner reservoir of buried hill in Beier depression is not stratigraphic bedded construction, but is fissure developing place formed by inner fault and broken lithogenetic belt. The fissures in inner reservoir of buried hill are developed unequally with many fissure types, which mainly are high angle fissure and dictyonal fissures and its developing degree and distribution is chiefly controlled by faulting. 4. The results of reservoir comprehensive evaluate and reservoir predicting indicates that advantageous areas of reservoir of buried hill chiefly distributes in Sudeerte, Beixi and Huoduomoer, which comprehensive evaluate mainly Ⅱand Ⅲ type reservoir. The clues and results of this text have directive significance for understanding the hydrocarbon reservoir condition of buried hill in Beier depression, for studying hydrocarbon accumulated mechanism and distributed regularity, and for guiding oil and gas exploration. The results of this text also can enrich and improve nonmarine hydrocarbon accumulated theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, with the discovery oil and gas reservoirs in volcanic rocks, the exploration and development of these reservoirs have attracted widespread attention because of the urgent need for increasing oil and gas production in the world and volcanic rocks has currently become an important exploration target in Liaohe depression. The study area of this dissertation is in the middle section of the easternern sag of Liaohe depression that have been confirmed by studying structural fractures, which constitute a key factor impacting volcanic rocks reservoirs. Substantial reserves and large production capacity in the areas with widely distributed volcanic rocks are important reasons for examining volcanic rocks in the study area. The study began with classification and experimental data analysis of volcanic rocks fractural formation, then focused on the mechanism of fracturing and the development of volcanic rocks structural fracture prediction methodology.and Lastly, predicted volcanic rocks structural fracture before drilling involved a comprehensive study of the petroleum geology of this area, which identified favorable traps thereby reducing exploration risks and promoting the exploration and development of volcanic rocks reservoirs. 3Dstress and 3Dmove software were applied to predict structural fracture by combining the core data, well-logging data and seismic data together and making the visualization of a fracture possible. Base on the detailed fracture prediction results, well OuO48 and well Ou52 were drilled and successfully provided a basis for high efficiency exploration and development of fractured reservoir in the middle section of the eastern sag. As a result of what have been done, a new round of exploration of volcanic rocks was developed. Well OU48 and well OU52 successfully drilled in this area resulted in the in-depth study of the mechanism of structural fracture formation, technological innovation of structural fracture prediction of volcanic rocks , which guided to oil and gas exploration effectively and made it possible for high production of volcanic rocks. By the end of August 2005, the cumulative oil and gas production of Ou48 block were 5.1606 × 104 t and 1271.3× 104 m3 respectively, which made outstanding contributions to the oilfield development. Above all this work not only promoted exploration and structural fracture prediction in volcanic rocks in Liaohe depression, but also applied to in the low-permeability and fractured sandstone reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a series researches are conducted on fracture reservoir prediction technology in general,and it especially focus on some difficult points. The technological series which integrated amplitude preserved data processing、interpretation and its comprehensive application research as a whole were developed and this new method can be applied to the other similar oilfield exploration and development. The contents and results in this paper are listed as follows: 1. An overview was given on the status and development of fracture reservoir estimation technique, compare and analyze those geophysical prediction methods. This will be very helpful to the similar reservoir researches. 2. Analyze and conclude the characters of geologies and well logging response of burial hills fracture reservoir, those conclusions are used to steer the geophysical research and get satisfying results. 3. Forward modeling anisotropy seismic response of fracture reservoir. Quantitatively describe the azimuthal amplitude variation. Amplitude ellipse at each incidence angle is used to identify the fracture orientation. 4. Numerical simulation of structure stress based on finite difference method is carried out. Quantitatively describe and analyze the direction and intensity of fracture. 5. Conventional attributes extraction of amplitude preserved seismic data、attributes with different azimuthal angle and different offset are used to determine the relationship between the results and fracture distribution. 6. With spectrum decomposition method based on wavelet transform, the author disclose the reservoir distribution in space. It is a powerful tool to display its anisotropy. 7. Integrated seismic wave impendence、elastic impendence、spectrum decomposition、attribute extraction、fracture analysis result as a whole to identify and evaluate the fracture reservoir. An optimum workflow is constructed. It is used to practical oil&gas production and good results are obtained. This can indicate the wide foreground of this technique series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What geophysical inversion studied includes the common mathematics physical property of inversion and the constitution and appraisal method of solution in geophysics domain, i.e. using observed physical phenomenon from the earth surface to infer space changing and physical property structure of medium within the earth. Seismic inversion is a branch of geophysical inversion. The basic purpose of seismic inversion is to utilizing seismic wave propagating law in the medium underground to infer stratum structure and space distribution of physical property according to data acquisition, processing and interpretation, and then offer the vital foundation for exploratory development. Poststack inversion is convenient and swift, its acoustic impedance inversion product can reflect reservoir interior changing rule to a certain degree, but poststack data lack abundant amplitude and travel time information included in prestack data because of multiple superimpose and weaken the sensitiveness which reflecting reservoir property. Compared with poststack seismic inversion, prestack seismic inversion has better fidelity and more adequate information. Prestack seismic inversion, including waveform inversion, not only suitable for thin strata physical property inversion, it can also inverse reservoir oil-bearing ability. Prestack seismic inversion and prestack elastic impedance inversion maintain avo information, sufficiently applying seismic gathering data with different incident angle, partial angle stack, gradient and intercept seismic data cube. Prestack inversion and poststack inversion technology were studied in this dissertation. A joint inversion method which synthesize prestack elastic wave waveform inversion, prestack elastic impedance inversion and poststack inversion was proposed by making fully use of prestack inversion multiple information and relatively fast and steady characteristic of poststack inversion. Using the proposed method to extract rock physics attribute cube with clear physical significance and reflecting reservoir characterization, such as P-wave and S-wave impedance, P-wave and S-wave velocity, velocity ratio, density, Poisson ratio and Lame’s constant. Regarding loose sand reservoir in lower member of Minghuazhen formation, 32-6 south districts in Qinhuangdao,as the research object, be aimed at the different between shallow layer loose sand and deep layer tight sand, first of all, acquire physical property parameters suitable for this kind of heavy oil pool according to experimental study, establishing initial pressure and shear wave relational model; Afterwards, performing prestack elastic wave forward and inversion research, summarizing rules under the guidance of theoretical research and numerical simulation, performing elastic impedance inversion, calculating rock physics attributes; Finally, predicting sand body distribution according to rock physics parameters, and predicting favorable oil area combine well-logging materials and made good results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-pore-throat, micro-fracture and low permeability are the most obvious characters of Xifeng ultra-low permeability reservoir, and threshold pressure gradient and medium deformation during the period of oilfield developing results non-linear seepage feature of the formation liquid flowing in the porous medium underground. It is impossible to solve some problems in the ultra-low permeability reservoir development by current Darcy filtration theory and development techniques. In the view of the characters of ultra-low permeability and powerful-diagenesis and fracture up-growth, the paper quantitatively characterizes of through-going scope for reservoir parameters together with some materials such as similarity field outcrop, rock core, drilling, well logging and production dynamic, which provides geological base for further development adjustment. Based on the displacement experiment of different kinds of seepage fluid and oil-water two phases, this paper proves the relationship between threshold pressure gradient and formation permeability in experiment and theory, which is power function and its index is about -1. The variation rule and the mechanism of oil-water two phases threshold pressure gradient are studied. At the same time, based on the experiment of medium deformation, the variation rule of formation physical property parameters and the deformation mechanism are researched, and the influential factors on the medium deformation are analyzed systematically. With elastic unsteady filtration theory, nonlinear mathematical models of the steady and unsteady flow of single phase as well as horizontal well flow and oil-water two phases flow are deduced with the influence of nonlinear factors including threshold pressure gradient and media deformation. The influences of nonlinear factors upon well deliverability and reservoir pressure distribution as well as the saturation variation pattern of oil-water front are analyzed. By means of the researches such as reasonable well pattern, reasonable well array ration, artificial fracture length optimization advisable water flood timing and feasibility of advanced water flooding, it is necessary to find out effective techniques in order to improve development result of this kind of reservoir. This research result develops and improves on low-velocity nonlinear seepage theory, and offers ways to study similar kind of reservoir; it is meaningful to the development of the ultra-low permeability oil and gas reservoir.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exploration in recent years shows that the Yanchang Formation in the southwest of Ordos Basin is of great resource potential and good exploration and exploitation prospect. In the thesis ,sedimentary source analysis,sedimentary system,sedimentary microfacies,sandstones distribution and reservoir characteristic are studied and favorable oil area are forecasted in Chang6-Chang8 of Yanchang formation in HuanXian region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on. The stratum of Chang6-Chang8 of Yanchang formation could be divided into pieces of member following the principles that firstly contrasting the big segments, then contrasting the small segments, being controlled by cycle and consulting the thickness etc.And the characteristic of stratum are detailed discussed , respectively. Based on the source direction of the central basin, heavy and light minerals are used to analyse source direction of Chang6 and Chang8 member, in HuanXian area. Research result shows that the source of Chang6 and Chang8 member is mixed provenance,including west-south,west and east-north. By the study of rock types、 sedimentary conformation、lithology and electromotive curve combination and palaeo-biology,lake、delta and braided delta mianly developed in study area are recognized, Subaqueous distributary channels in delta front and in braided delta front, and sand body in deep-lake turbidite, are the main reservoir.forthermore,the characteristic of depositional system and sandy body in space are discussed. Applied with routine microscope slice identification, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, Feldspar-lithic fine-sandstone and feldspar fine-sandstone are mainly sandstone of Y Chang6-Chang8 in Huanxian area, small pore and tiny pore are the main pore types, tiny throat type and micro-fine throat type are widely developed , secondary dissolution porosity, intercrystal porosity, tiny pore and micro-crack are main pore types.Intergranular porosity and dissolution porosity secondary is the main pore secondary. The dominant diagenesis types in the area are compaction, cementation, replacement and dissolution. Chlorite films cementation facies, carbonate cementation facies ,mud cementation compaction facie, compaction 、pressure solution facies are the main diagenetic facies,in which Chlorite films cementation facies is the best diagenetic facies in study area. Reservoir influence factor analysis ,rock types are the main factor forming this low-pore and low-permeability of Chang6-Chang8 member in study area,and relatively higher permeability area are cortrolled by sedimentary facies distribution, diagenesis improved reservoir physical property. According to the distributing of sedimentary micro-facies and sandy body , and the test oil, favorable region in Chang6-Chang8 are forecasted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the intermediary and later stage of oil field development, remaining oil disperses fiercely, the contradiction in the layer has become the main problem and the distribution of remaining oil is transforming to the difference of single sand-body. So, the fine description research of reservoir is becoming a tendency and the methods of remaining oil research need new developments. In the research of “The Single-sand-body Architectural Element and Potentiality Analysis Research of Meandering River, GuDao Oil Field”, the research principle is analytical hierarchy process and schema prescription what are reservoir fine description methods under the condition of dense well pattern. The knowledge of regional sedimentary system and sedimentary facies is the foundation of this research. According to the 3D distribution model of the microfacies sand-body of fluvial facies, stratigraphic unit classification & coenocorrelation of 154 wells are completed in the research of meandering river sand-body in Ng3-4. In this research, the 3D distribution of microfacies sand-body in the main layers are settled. The architectural element model of Ng4 point bar is analysed using the drill core and FMI data. According to the overgrow model of point bar, the surfaces of lateral accretion is traced and the architectural element model of point bar is settled. In the research, the control of micro-facies sand-body of meandering river to the distribution of remaining oil is analysed and the potential area is proposed. All these will play an important role in the development of GuDao oil field. In this research, abundant of logging data, drill core data and production performance data are used to analyse the contributing factor of single sand-body in the Ng3-4 meandering river. Using the technology of geological modeling, all that are researched including the 3D distribution scales of meandering river point bar, the control affection of inner lateral accretion layer to the distribution of oil & gas and remaining. Then, the way of remaining oil development in the sand-body of meandering river is improved. The innovation of the research technology includes (1) the presentation of the conception and research methods of micro-facies sand-body (2) enriching the content of reservoir architectural element research and (3) to renew the research method of remaining oil analysis. The research has practiced with obvious effect.(1)It is deepened into understand the river facies reservoir construction of Gudao oil field, By Building the reservoir construction and studying the effect of diffent deposit or geological interface to fluid partition and to the distribution of the remaining oil, we improved the understanding to the distribution of the remaining oil;(2)By building the distribution mod of the remaining oil in the reservoir construction and making the remaining oil description detailed,the development direction of old oil field is more clear;(3)Expanded the application scales of the horizontal well and enhanced the application effects of the horizontal well technique , we designed and drilled 23 ports horizontal wells in all , the cumulative hydrocarbon production is 10.6*104 t;(4) According to the findings of the internal building structure in reservoir of the fluvial facies in the region of interest, and uniting the injection/production corresponding states、the producing history and the dynamic monitoring documents of the oil/water wells in the flooding units , we researched the residual oil distribution in the point bar , and found the distribution regular patterns of the remaining oil, and comprehended the distribution of the remaining oil . In base of that , we proceeded the optimizing designs of the oil well potentialities , and advanced the effect of the treatment potentials . It is proved that , it was very important that internal building structure research of the single sand body of reservoir for guiding the high efficiency potentialities of the remaining oil in the high water cut stage .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In research field of oil geophysical prospecting, reservoir prediction is refers to forecasting physical properties of petroleum reservoir by using data of seismic and well logging, it is a research which can guide oil field development. Singularities of seismic and logging data are caused by the heterogeneity of reservoir physical property. It's one of important methods that using singularity characteristics of seismic and logging data to study the reservoir physical property in recently. Among them, realization of reservoir quantitative prediction by analyzing singularity of the data and enhancing transition description of data is difficulty in method research. Based on wavelet transform and the fractal theory, the paper studied the singularity judgment criterion for seismic and logging data, not only analyzed quantitative relation between singularity data and reservoir physical property, but also applied it in practical reservoir prediction. The main achievements are: 1. A new method which provides singular points and their strength information estimation at only one single scale is proposed by Herrmann (1999). Based on that, the dissertation proposed modified algorithm which realized singularity polarity detection. 2. The dissertation introduced onset function to generalize the traditional geologic boundaries variations model which used singularity characteristics to represent the abruptness of the lithologic velocity transition. We show that singularity analysis reveals generic singularity information conducted from velocity or acoustic impedance to seismogram based on the convolution seismic-model theory. Theory and applications indicated that singularity information calculated from seismic data was a natural attribute for delineating stratigraphy boundaries due to its excellent ability in detecting detailed geologic features. We demonstrated that singularity analysis was a powerful tool to delineate stratigraphy boundaries and inverse acoustic impedance and velocity. 3. The geologic significances of logging data singularity information were also presented. According to our analysis, the positions of singularities indicate the sequence stratigraphic boundary, and there is subtle relationship between the singularity strength and sedimentary environment, meanwhile the singularity polarity used to recognize stratigraphic base-level cycle. Based on all those above, a new method which provided sedimentary cycle analysis based on the singularity information of logging data in multiple scales was proposed in this dissertation. This method provided a quantitative tool for judging interface of stratum sequence and achieved good results in the actual application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yaoyingtai Block is located within the northeastern Changling Depression of southern Songliao Basin, where the reservoir sandstones are petrophysically characterized by very low permeability, which results in the low success probability of artificial fracturing, and the low oil yield by water injection in the course of oil production. In order to improve the situations as stated above, this research aims to work out an integral fracturing technology and strategy applicable to the low permeable reservoirs in Yaoyingtai Block. Under the guidance of geological theory, reservoir engineering and technology, the subsurface occurrences of natural and hydraulic fractures in the reservoirs are expected to be delineated, and appropriate fracturing fluids and proppants are to be optimized, based on the data of drilling, well logging, laboratory and field experiments, and geological data. These approaches lay the basis of the integral fracturing technology suitable for the low permeable reservoir in the study area. Based on core sample test, in-situ stress analysis of well logging, and forward and inversion stress field modeling, as well as fluid dynamic analysis, the maximum in-situ stress field is unraveled to be extended nearly along the E-W direction (clustering along N85-135°E) as is demonstrated by the E-W trending tensional fractures. Hydraulic fractures are distributed approximately along the E-W direction as well. Faulting activities could have exerted obvious influences on the distribution of fractures, which were preferentially developed along fault zones. Based on reservoir sensitivity analysis, integrated with studies on rock mechanics, in-situ stress, natural fracture distribution and production in injection-production pilot area, the influences of primary fractures on fracturing operation are analyzed, and a diagnostic technology for primary fractures during depressurization is accordingly developed. An appropriate fracturing fluid (hydroxypropyl guar gum) and a proppant (Yixing ceramsite, with a moderate-density, 0.45-0.9mm in size) applicable to Qingshankou Formation reservoir are worked out through extensive optimization analysis. The fracturing fluid can decrease the damage to the oil reservoir, and the friction in fracturing operation, improving the effect of fracturing operation. Some problems, such as sand-out at early stage and low success rate of fracturing operations, have been effectively solved, through pre-fracturing formation evaluation, “suspension plug” fracturing, real-time monitoring and limited-flow fracturing. Through analysis of fracture-bearing tight reservoir with variable densities and dynamic analysis of influences of well patterns on fracturing by using numerical simulation, a fracturing operation scheme for the Qingshankou Formation reservoir is proposed here as being better to compress the short factures, rather than to compress the long fractures during hydraulic fracturing. It is suggested to adopt the 450m×150m inverted 9-spot well pattern in a diamond shape with wells placed parallel to fractures and a half fracture length of 60-75m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary provenance direction,sedimentary facies,reservoir geological characteristic,pore structure; physical property characteristic,reservoir classification and evaluation ,forthermore,favorable area area are forecasted of Yanchang formation in ZhiDan region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on,in the thesis. The following fruits are mainly achieved in this paper: Yanchang formation stratum is divided and correlated in this entire region, and the characteristic of oil layer unit is detailed discussed , respectively. According to main marker bed and supplementary ones.and research result shows that the source of provenance direction during Yanchang Formation mianly is north-east. Delta and lake are mainly developed in study area ,sub-facies and micro-facies are divided,distribution of sedimentary micro-facies in plane and palaeogeographic evolution are described,and gentle slope type- shallow water delta depositional model is established. Fine-grain arkose sandstone is the main reservoir,and which have experienced such different degree diagenesis as compaction, cementation, replacement and dissolution, and in which compaction and cementation are mainly factors to reduce sandstone physical property and dissolution effectively improved physical property during burial diagenesis procedure. All reservoirs of Yanchang Formation have entered A period of late diagenetic stage according to scheme of diagenesis period division . Intergranular porosity,dissolution porosity,fissure porosity are main pore types. And porosity structure are analyse by mercury penetration capillary pressure parameter,fine-shortness type and fine- length throat type are mainly developed. as a whole,the reservoir, with the characteristic of porosity and permeability altering apparently,strong inhomogeneity , is a medium- porosity and medium permeability one. In plane,higher- porosity and higher-permeability are corresponded well with distributary channel area, physical property and inhomogeneity are affected by both deposition and diagenesis,and distributary channel and underwater distributary channel are favorable facies . According to such characteristic as lithology,physical property,pore structure ,diagenesis and sandstone distribution, the sandy reservoir can be classified 4 types, and the main sandy in every oil layer unit are evaluated according to the standard. The analysis result of petroleum concentration rule shows that Yanchang Formation are with not only favourable oil source rock,reservoir,covering combination ,but also good entrapment condition in study area. Lithology and structure-lithology oil pool are mainly developed ,based on condition of favorable reservoir developments,accounting for deliverability and sandstone superface elevation,zone of profitabilitis are forecasted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating geology, core, well-logging, experimental data, and production data, with the guide of sequence stratigraphy, sedimentology, reservoir exploitation geology and other disciplines’ theories, combinating the sequence stratigraphy and Maill’s reservoir architectures concepts and theories, the research and analysis methods of non-marine fan-delta reservoir architectures are systemly set out. And the correspondence of reservoir structures, sedimentology and reservoir geology is established. An integral and systematical research approach and theory and conception of reservoir architecture is developed, which enriched the reservoir research theory. Considering the requirement to the reservoir research in different development phase, the six classification systems of reservoir architectures are brought up. According to different reservoir’s connection and location of Ek different levels of reservoir architecture, 3 types, 20 kind architectures styles are summarized. The research about undisturbed reservoir characterization is launched, through analyzing reservoir characterization to pour water to the different reservoirs of Kongnan region, the changing regular pattern of reservoir quality during pouring water process is summarized. Combined with the actual zone data, inner-well reservoir geometry relationship of injection-production model is designed, and the models of development process are dynamic simulated. In view of seven laboratory samples of 3 types, six order architecture unit of braided stream, fan-delta and nearshore subsea apron in Kongnan region, the remaining oil distribution model is determined. Using the geo-statistics methods dissect the key regions, the tectono-stratigraphical model and the reservoir parameters model are established. The distribution of the characteristics of the underground reservoir is quantitatively described. Based on the reservoir research, carrying out the development of different characteristics of reservoir, the development pattern and countermeasures are determined. The relationships between reservoir structure levels and reservoir development stages are summed up, the relationships between architecture unit of different levels and exploration develop stages are determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract:Little fundamental work on petroleum exploration and production of Zuunbayan Subbasin, Mongolia has been done before because of the backward economy and petroleum industry techniques in this country, which also results in our little knowledge of reservoir characteristics of this area. This paper focused on the sedimentary system, sedimentary facies, reservoir characteristics and their genesis distribution of Zuunbayan subbasin with various drilling, well logging, seismic, coring and outcrop data, aiming at providing significant guidances for the petroleum exploration and production of Zuunbayan area. Therefore, several conclusions have been achieved as follows: ①In Zuunbayan Subbasin, there are two chief source areas with Tarkhyata and Totoshan Uplifts in the southeast and Saykhandulaan Uplift in the west, respectively, while two subsidiary ones in the northeast and southwest of this subbasin. The sedimentary system of alluvial fan-fan delta is formed in the southeast highland, meanwhile braided river-braided river delta develops in the western ramp region and fan delta in the southern palaeohigh. ②There are middle to high permeability reservoirs in the upper Zuunbayan Formation and the upper member of lower Zuunbayan Formation meanwhile low-porosity and permeability to ultra-low permeability ones in Tsagaan Tsav Formation and the middle and lower members of lower Zuunbayan Formation. Combing with sedimentary facies belt, oil sources conditions and tectonic settings, favorable reservoir belts have been proved to be existing in the fan delta front reservoirs of lower Zuunbayan – Tsagaan Tsav Formation in the central uplift faulted zone as well as the braided river front ones of lower Zuunbayan-Tsagaan Tsav Formation in Zuunbayan nose anticlinal structural belts. ③The reservoir lithologic composition is complex and also related to volcanic activities. Generally, the types of lithologic composition in Zuunbayan Subbasin are chiefly feldspathic litharenites with low compositional maturity and high-middle textural maturity. The rock constituents from upper Cretaceous to lower Zuunbayan Formation are mainly metamorphic rocks including cleaving stone, phyllite, quartzite and schist while volcanic tuffs and acidic extrusive rocks are the secondary; and in the Tsagaan Tsav Formation are mainly volcanic tuffs with subsidiary cleaving stone, phyllite, quartzite and schist. ④In this paper, high-quality reservoirs in the upper member of lower Zuunbayan Formation have been discovered in the drilled high production wells of favorable reservoir facies through sedimentary system and sedimentary facies research, which benefits the prospect and also will bring a new life for petroleum exploration and production of Zuunbayan Subbasin. Key words: sedimentary system, sedimentary facies, superior quality reservoir, Zuunbayan Subbasin, lower Zuunbayan Formation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reservoir characterization and reservoir modeling are two key techniques in petroleum exploration and development. They all are based on the reliable static and dynamic properties of the reservoirs, especially the static and dynamic properties of the reservoirs at each borehole. Without the static and dynamic properties of the reservoir, reservoir characterization and reservoir modeling will pass into nothingness. In fact, the static and dynamic properties of the reservoir are needed in every domain and stage of petroleum exploration & development Today, petroleum industry has reached a stage worldwide that most of the simple & large massive reservoirs have been well explored and developed. As a result, oil companies are paying more and more attention to the exploration & development of the complex & middle to small clastic reservoirs (such as low resistivity sandstone reservoirs, low or no resistivity contrast sandstone reservoirs, conglomerate reservoirs, volcanoclastic reservoirs). In the recent years, oil companies inside and outside China are focusing on the exploration and development elastic reservoirs. Most of the theories & methods being applicable for simple clastic reservoirs can not be used in complex clasic reservoirs. Some theories & methods that are not resolved in the case of simple clasic reservoirs become more impossible to be resolved in the case of complex elastic reservoirs. A set of theories & methods being applicable for computing the static and dynamic properties of the complex elastic reservoirs are developed in this paper and they have been put into practice successfully. These theories & methods are developed by integrating multi-subjects such as geology, well logging and reservoir engineering, in which geology is used as direction and modern well logging technology is used as basis and reservoir engineering is used as assistance and computer technology is used as tool. There are three outstanding breakthroughs in this paper: of the low porosity fractured and/or vuggy carbonate/igneous reservoirs too. A set of practical theories and methods of computing the static properties (such as porosity, saturation, lithology and fluid type) & dynamic properties (such as permeability and production rate) of simple clastic reservoirs have been developed with the hard efforts of many petroleum engineers and scientists in the past 70 years. However, only some of the theories & methods being applicable for simple clastic reservoirs can be used in complex clastic reservoirs after little modification because of the complexity of the complex clastic reservoirs. Most of the theories & methods being applicable for simple clastic reservoirs can not be used in complex clasic reservoirs. Some theories & methods that are not resolved in the case of simple clasic reservoirs become more impossible to be resolved in the case of complex clastic reservoirs. A set of theories & methods being applicable for computing the static and dynamic properties of the complex clastic reservoirs are developed in this paper and they have been put into practice successfully. These theories & methods are developed by integrating multi-subjects such as geology, well logging and reservoir engineering, in which geology is used as direction and modern well logging technology is used as basis and reservoir engineering is used as assistance and computer technology is used as tool. There are three outstanding breakthroughs in this paper:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since C.L. Hearn presented the concept of flow unit in 1984, its generation mechanisms and controlling factors have been studied in many aspects using different methods by researchers. There are some basic methods to do the research, and there are several concepts and classification standards about flow unit. Based on previous achievements and using methodologies from sedimentary geology, geophysics, seismic stratigraphy, and reservoir engineering, the author systemically studies the factors controlling flow unit, puts forward a series of methods for recognition, classification and evaluation of flow unit. The results obtained in this paper have important significance not only for understanding the flow unit, but also for revealing the distribution of remaining oil. As a case, this paper deals with the reservoir rocks in Guantao Group of Gudong Oilfield. Zhanhua Sag, Jiyang Depression in Bohaiwan Basin. Based on the study of stratigraphic, depositional and structural characteristics, the author establishes reservoir geological models, reveals the geological characteristics of oil-bearing reservoir of fluvial facies, points out the factors controlling flow unit and geological parameters for classification of flow unit. and summarizes methods and technologies for flow unit study when geological, well-logging and mathematical methods are used. It is the first attempt in literatures to evaluate reservoir by well-logging data constrained by geological conditions, then a well-logging evaluation model can be built. This kind of model is more precise than ever for calculating physical parameters in flow unit. In a well bore, there are six methods to recognize a flow unit. Among them, the activity function and intra-layer difference methods are the most effective. Along a section, the composition type of flow unit can be located according amplitude and impedance on seismic section. Slice method and other methods are used to distinguish flow unit. In order to reveal the distribution laws of flow unit in space, the author create a new method, named combination and composition of flow unit. Based on microscopic pore structure research, the classification methods of flow unit are developed. There are three types of flow unit in the reservoir of fluvial facies. They have their own lithology, petrophysics and pore structure character. Using judgement method, standard functions are built to determine the class of flow unit of fluvial facies. Combining reservoir engineering methods, the distribution laws of remaining oil in different types, or in different part of a flow unit are studied. It is evident that the remaining oil is controlled by the type of flow unit. The author reveals the relationship between flow unit and remaining oil distribution, builds the flowing models, predicts the variation of reservoir parameters in space, put forward different methods developing remaining oil in different flow unit. Especially, based on the results obtained in this paper, some suggestions for the adjustment of the developing flow units have been applied in Districts No.4 and No.7, and good results have been yielded. So, the results of this paper can guide oil field development. They are useful and significant for developing the remaining oil and enhancing the oil recovery efficiency.