3 resultados para Ocean temperature.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
Resumo:
随着全球变暖和各种极端天气事件发生频率的增加,气候变化已成为全世界关注的焦点问题,ENSO事件是年际尺度上气候变化的最强信号,它的影响波及到世界各地,所以,对ENSO事件进行深入研究,弄清其发生机制,具有重要的科学意义。虽然,目前对ENSO事件的研究已经取得了巨大成果,但仍不能对其发生发展的全过程进行准确的预测,因此,仍需要对其进行深入研究,本文正是从热带太平洋次表层温度场和流场的变化着手,对ENSO循环过程中的相关机理进行研究。 通过对TOGA/TAO、SODA和NCEP等海洋大气实测和再分析资料的分析,研究了热带太平洋次表层海温和流场的变化特征,分析了它们的变化机理,进而深入探讨了它们与ENSO事件的相互关系,并利用全球海洋数值模式的敏感性试验,探讨了大气风场的变化对海洋次表层要素的影响,主要得到以下结论: 1. 上世纪70年代末的气候突变之后,用28℃定义西太平洋暖池(WPWP),已不能合理的描述WPWP的基本特征。我们通过对比分析提出,用28.5℃来定义WPWP更合理,这一定义即可以充分反映WPWP突变前的特征,又能够合理的反映WPWP突变后的特征;对新定义的WPWP区域不同深度的海温距平的分析表明,次表层(148m)海温距平的变化趋势和变化幅度与表层和深层的变化差异较大,次表层海温的变化幅度最大并且年代际变化趋势与上下层正好相反;进一步的研究表明,WPWP次表层海温的年代际变化与PDO的变化有一定关系。 2. 利用热带太平洋次表层海温的变化特征,定义了表征ENSO事件的新指数——赤道太平洋温跃层海温振荡指数(EPOI),与其它ENSO指数相比,EPOI将东、西太平洋次表层海温的变化信息都包括在内,能够较全面的反映出ENSO事件的变化特征,特别是EPOI可以较好的反映出ENSO循环的年代际变化特征。另外,EPOI的变化比ONI的变化超前2个月,更有利于对ENSO事件的提前预报。由于EPOI主要反映海洋次表层的变化特征,因此能够更好的满足对ENSO机理研究的需要。 3. 赤道潜流距平场的EOF分析表明,其前两个模态的方差贡献较大,第一模态方差贡献为30.75%,主要反映东太平洋赤道潜流的变化特征;第二模态方差贡献为16.18%,主要反映中太平洋赤道潜流的变化特征。赤道潜流前两个模态与ENSO指数的变化有很好的相关关系,其中东太平洋潜流在滞后ENSO指数1个月时,二者达到最大负相关(r=-0.74)。中太平洋赤道潜流的变化对“东部型”和“中部型”El Niño事件的形成有一定影响。“东部型”El Niño事件发生前,中太平洋赤道潜流异常增强,次表层异常海温信号随着潜流中心迅速向东移动到达东太平洋,使得“东部型”El Niño事件爆发;而“中部型”El Niño事件发生前,中太平洋赤道潜流则异常减弱,西太平洋异常海温信号不能迅速向东传播,而是在中西太平洋堆积并向上扩展,使得异常海温首先在中太平洋出现,“中部型”El Niño事件爆发。 4. ENSO循环过程中,异常冷(暖)信号之所以在8ºN-10ºN附近向西传播的原因较多,其中温跃层深度在8ºN-10ºN的特殊分布特征对其有一定贡献,具体表现为在北半球8ºN-10ºN正好是温跃层深度较浅的区域,该区域的温跃层相当于从东到西的一个海下“山脊”,使得来自南北两侧的异常信号都很难穿过这一区域,而只能沿该纬度向西传播;而南半球的温跃层对来自赤道地区的异常信号没有阻挡作用,使其可以直接传播到高纬度地区。ENSO信号的强度在传播过程中发生了明显的变化,主要是ENSO事件爆发后,4-5年的周期信号并没有传到东太平洋10ºN附近,在从东到西的传播过程中,4-5年的周期信号有所增加,但增加的幅度较小。在西太平洋有来自南、北半球中高纬度异常信号的补充,从而使得ENSO循环得以维持。 5. 数值模拟表明,不同区域风应力的变化对海洋的影响各不相同。赤道地区风应力对海洋的影响主要通过纬向分量的变化来产生作用,它的变化主要对赤道次表层海温的变化产生影响,并且东西太平洋呈现反位相变化趋势;而对流场的影响则是上下层反位相变化。北太平洋副热带地区风应力的变化对海洋的影响与赤道有明显不同,对温度场的影响表现为东西太平洋次表层海温的变化一致,而对流速的影响则是东西太平洋反位相变化。
Resumo:
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。