368 resultados para ORGANIC MONOLAYERS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.
Resumo:
Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.
Resumo:
Nanogold colloidal solutions are prepared by the reduction of HAuClO4 with sodium citrate and sodium borohydride. 4-Aminothiophenol (ATP) self-assembled monolayers (SAMs) are formed on gold(lll) surface, on which gold nanoparticles are immobilized and a sub-monolayer of the particles appears. This sub-monolayer of gold nanoparticles is characterized with scanning tunneling microscopy (STM), and a dual energy barrier tunneling model is proposed to explain the imageability of the gold nanoparticles by STM. This model can also be used to construct multiple energy barrier structure on solid/liquid interface and to evaluate the electron transport ability of some organic monolayers with the aid of electrochemical method.
Resumo:
The reaction of nitrone, N-methyl nitrone, and their hydroxylamine tautomers (vinyl-hydroxylamine and N-methyl vinyl-hydroxylamine) on the reconstructed Si(100)-2 x 1 surface has been investigated by means of hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The calculations predicted that both of the nitrones should react with the surface dimer via facile concerted 1,3-dipolar cycloaddition leading to 5-member-ring compounds. The reaction of hydroxylamine tautomers on the Si(100) surface follows pi-complex (intermediate) mechanism. For the reaction of N-methyl vinyl-hydroxylamine, the pi-complex intermediate undergoes [2+2] cycloaddition leading to a 4-member-ring compound. But in the reaction of vinyl-hydroxylamine, the intermediate undergoes H-migration reaction ("ene" reaction) resulting in the oxime-terminated Si surface. All the surface reactions result in the hydroxyl-terminated silicon surfaces, which are very useful for the further modification of the semiconductor.
Resumo:
To explore the reactivities of alkene (-CH=CH2) and carboxy (-COOH) group with H-Si under UV irradiation, the addition mechanism for the reactions of SiH3 radical with propylene and acetic acid was studied by using the B3LYP/6-311++ G(d,p) method. Based on the surface energy profiles, the dominant reaction pathways can be established; i.e., SiH3 adds to the terminal carbon atom of the alkene (-CH=CH2) to form an anti-Markovnikov addition product, or adds to the oxygen atom of the carboxy group (-COOH) to form silyl acetate (CH3-COOSiH3). Because the barrier in the reaction of the carboxy group (39.9 kJ/ mol) is much larger than that of alkene (11.97 kJ/mol), we conclude that the reaction of bifunctional molecules (e.g., omega-alkenoic acid) with H-Si under irradiation condition is highly selective; i.e., the alkene group (-CH= CH2) reacts with SiH3 substantially faster than the carboxyl group (-COOH), which agrees well with the experimental results. This provides the possibility of preparing carboxy-terminated monolayers on silicon surface from omega-alkenoic acids via direct photochemical reaction.
Resumo:
Self-assembled monolayers (SAMs) of a series of p-substituted benzoyl chlorides were formed on indium tin oxide as the cathode for the fabrication of inverted bottom-emitting organic light-emitting diodes (IBOLEDs). The studies on the efficiency of electron injection and device performances showed that the direct tunneling of electron and the formation of dipole associated with the monolayer-forming molecule lead to significant enhancement in electron injection. Consequently, the device efficiency is greatly improved.
Resumo:
An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.
Resumo:
A new multifunctional multilayer films consisting of tris(2,2'-bipyridyl)ruthenium(II) (Rubpy) and sodium decatungstate (W-10) have been prepared by the layer-by-layer (LbL) self-assembly method on ITO substrate. X-ray photoelectron spectra (XPS) confirmed the existence of W10 and Rubpy. Cyclic voltammetry (CV) and UV-Vis spectroscopy demonstrated the uniform assembly of (W-10/Rubpy) multilayer films. The multilayer films possess electrocatalytic activities on the reduction of iodate and oxidation of oxalate. Moreover, the films exhibited electrochemiluminescence (ECL) with tripropylamine (abbreviated as TPA) as the coreactant and the ECL response was proportional to the number of (W-10/Rubpy) layers. These characteristics of the multilayer films might find potential applications in the field of sensors and materials fields.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
The type of nanostructure referred to in biomineralization as a mineral bridge has been directly observed and measured in the organic matrix layers of nacre by transmission electron microscopy and scanning electron microscopy. Statistical analysis provides the geometric characteristics and a distribution law of the mineral bridges in the organic matrix layers. Experiments reveal that the nanostructures significantly influences the mechanical properties of the organic matrix layers. In addition, the mechanical analysis illustrates the effects of the nanostructures on the behaviors of the organic matrix layers, and the analytical results explain the corresponding experimental phenomena fairly well. The present study shows that the mineral bridges play a key role in the mechanical performances of the organic matrix layers of nacre. The results obtained provide a guide to the interfacial design of synthetic materials.
Resumo:
The direct observation of a type of microstructure in the organic matrix layers of nacre was obtained with a transmission electron microscope. The microstructure, which is referred to as mineral bridge in the biomineralization, is nanoscale and randomly distributed in the layers. Statistical analysis gives the distribution laws and characteristics of mineral bridges in the organic matrix layers. The existence of mineral bridges in nacre was confirmed, and it was shown that the microarchitecture of nacre should be described as a "brick-bridge-mortar" arrangement rather than traditional "brick and mortar" one.
Resumo:
We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).