25 resultados para OREOCHROMIS-NILOTICUS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A 115 days feeding trial was conducted to evaluate the effect of dietary cyanobacteria on growth, microcystins (MCs) accumulation in hybrid tilapia (Oreochromis niloticus x O. aureus) and the recovery when the fish were free of cyanobacteria. Three experimental diets were formulated: the control (cyanobacteria free diet); one test diet with cyanobacteria from Lake Taihu (AMt 80.0 mu g MCs g(-1) diet) and one with cyanobacteria from Lake Dianchi (AMd, 410.0 rho g MCs g(-1) diet). Each diet was fed to fish for 60 days and then all fish were free of cyanobacteria for another 55 days. A significant increase in feeding rate (FR) was observed in fish fed AMd diet after a first 30-day exposure (1(st) EP), and in fish fed both AMt diet and AMd diet after a second 30-day exposure (2(nd) EP). Specific growth rates (SGR) of fish fed AMt diet and AMd diet were both obviously affected after the first 30-day exposure, but SGR was only significantly affected in fish fed AMt diet after the second 30-day exposure. After a 55-day recovery, there were no significant differences among diets in the indices mentioned above. Much higher concentrations of MCs were accumulated in tissues of all fish exposed to cyanobacteria. After the 55-day recovery, MC concentrations in fish tissues were significantly lower than those on day 60. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Perfluorinated organic compounds (PFOCs) are emerging persistent organic pollutants (POPs) widely present in the environment, wildlife and human. We studied the cellular toxicology of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on oxidative stress and induction of apoptosis in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to PFOS or PFOA (0, 1, 5, 15 and 30 mg L-1) for 24 h, and a dose-dependent decrease in cell viability was determined using trypan blue exclusion method. Significant induction of reactive oxygen species (ROS) accompanied by increases in activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were found, while activities of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were decreased. Glutathione (GSH) content was reduced following treatment of PFOA and PFOS. A dose-dependent increase in the lipid peroxidation (LPO) level (measured as maleic dialdehyde, MDA) was observed only in the PFOA exposure groups, whereas LPO remained unchanged in the PFOS exposure groups. Furthermore, a significant activation of caspase-3, -8, -9 activities was evident in both PFOS and PFOA exposure groups. Typical DNA fragmentation (DNA laddering) was further characterized by agarose gel electrophoresis. The overall results demonstrated that PFOS and PFOA are able to produce oxidative stress and induce apoptosis with involvement of caspases in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A 12-week growth trial was conducted in a flow-through system to investigate the chronic toxic effect of dietary intake of cyanobacteria on growth, feed utilization and microcystins accumulation in Nile tilapia (Oreochromis niloticus L.) (initial body weight: 5.6 g). Six isonitrogenous and isocaloric diets were formulated to include different contents of cyanobacteria with the dietary microcystins increasing from 0 to 5460.06 ng/g diet. The results showed that dietary intake of cyanobacteria could increase the growth of tilapia while there are no impacts on feed conversion efficiency or mortality. Feeding rate was higher for the diets containing highest cyanobacteria. Microcystins were mostly accumulated in fish liver. The relationship between microcystins contents in muscle, liver, spleen and dietary intake could be described by quadratic equations. Microcystins content in the muscle of Nile tilapia in present study exceeded the upper limit of the tolerable daily intake (TDI) of microcystins suggested by the WHO (0.04 mu g/kg body weight/d). It is suggested that Nile tilapia fed on toxic cyanobacteria is not suitable for human food. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A culture gill epithelium from seawater-adapted tilapia (Oreochromis niloticus) was developed for testing PAHs and dioxin-like contaminants in seawater. The epithelia consists two to three layers of epithelial cells incorporating both pavement cells and mitochondria-rich cells (MRCs). Polarity and a stable transepithelial resistance (TER) were maintained. and closely resembled those in fish gills in vivo. The tightness (integrity) of the epithelia remained unchanged upon exposure to benzo[a]pyrene (B[a]P). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (PCB#126), while a concentration-dependent response of EROD activity in the epithelia was induced within 18-24 h when the apical side was exposed to these toxicants. The 24 h EC50 of EROD activity was 2.77 x 10(-7) M for PCB#126, 1.85 x 10(-7) M for B[a]P and 7.38 x 10(-10) M for TCDD. showing: that the preparation was not only sensitive to PAHs and dioxin-like compounds, but also able to produce inductive potency of AhR agonists that generally agreed with those derived from other established in vitro and in vivo systems. The results suggest, that the cultured gill epithelia from seawater-adapted tilapia may serve as a simple. rapid and cost-effective tool for assessing exposure and potential effects of toxicants in marine waters. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Variations in kinetics of alkaline phosphatase occurring in different sites of sediment associated with cage culture of Oreochromis niloticus in a shallow Chinese freshwater lake (Lake Donghu) were described. In addition, the kinetic parameters of each 2.5-cm stratum in the sediment from the surface down to 37.5 cm were analyzed. Horizontally, the V-max values of alkaline phosphatase in surface sediments increased markedly at sites immediately under and adjacent to the cage that would be subjected to the deposition of fish feces. Peak V-max values in the top 5 cm of the sediment under the cage were also observed relative to their deeper control. After a treatment where the fish feces were added over 12 days, the sediment in deeper layer exhibited a significantly higher V-max value, thereby corroborating the relationship between V-max values of alkaline phosphatase and fish feces in sediments. The fish feces exhibited a remarkable alkaline phosphatase activity (APA). Thus, it is indeed a source of the enzyme. Effects of the fish feces were dose- and time-dependent. The V-max values in sediments were always stimulated, but the K-m values showed much more variability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A growth trial was conducted at 30 degrees C to investigate the effect of body size on growth and energy budget of Nile tilapia. The average initial body weights of the four size groups tested were 9.3, 34.1, 80.3 and 172.4 g, respectively. Fish were fed to satiation twice a day with a diet containing 35.6% crude protein. Food consumption (C-max: kJ/day) increased with body size (W: g) according to the relationship: Ln C-max = 1.45 + 0.42 LnW. The final body contents of dry matter, crude protein and ash per unit body weight increased with increasing body size while contents of fat and energy were independent of body size. Specific growth rates of wet weight, dry weight, protein and energy decreased as the fish increased in size. Feed efficiencies in wet weigh, dry weight and crude protein decreased with increasing body size, while that of energy remained unchanged. The proportions of energy intake allocated to the various components (faecal energy, excretory energy, heat production and recovered energy) of the energy budget were not significantly affected by body size, and the average budget was: 100IE-18.5(+/- 1.33)FE + 5.9 (+/- 3.09)(ZE + UE) + 49.3(+/- 3.77)HE + 26.3(+/- 6.23)RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. It is suggested that the decrease in growth rate in larger fish is mainly due to the decrease in relative food intake. (C) 1997 Elsevier Science B.V.
Resumo:
Nile tilapia weighing 8.29-11.02 g were fed a practical diet at seven ration levels (starvation, 0.5, 1, 2, 3, 4% body weight per day and satiation) twice a day at 30 degrees C. Feed consumption, apparent digestibility, nitrogenous excretion and growth were determined directly, and heat production was calculated by difference of energy budget. The relationship between specific growth rate in wet weight (SGR(w), percentage per day) and ration size (RL, percentage per day) was a decelerating curve described as SGR(w) = 2.98 (1 - e(-0.61(RL-0.43))). The apparent digestibility coefficients for dry matter and protein showed a decreasing pattern with increasing ration while the apparent digestibility coefficient of energy was not significantly affected by ration size. The proportion of gross energy intake lost in nitrogenous excretion tended to decrease with increasing ration. Feed efficiency was highest, and the proportion of gross energy intake channelled to heat production was lowest, at an intermediate ration level (2% per day). The energy budget at the satiation level was: 100IE = 16.9FE + 1.2(ZE + UE) + 62.3HE + 19.6RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. (C) 1997 Elsevier Science B.V.
Resumo:
Two 8-week growth trials were conducted to determine the effect of continuous (CF) versus 2 meals day(-1) (MF) feeding and 30% starch versus 30% glucose diets on the carbohydrate utilization of 9.0-g white sturgeon and 0.56-g hybrid tilapia. The two trials were conducted under similar conditions except that sturgeon were kept at 18.5 degrees C in a flow-through system and tilapia were kept at 26 degrees C in a recirculating system. Significantly (P less than or equal to 0.05) higher specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), body lipid content and liver glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) activities were observed in the CF than MF sturgeon. Only SGR, FE and PER were higher in sturgeon fed the starch than the glucose diets. Only higher liver G6PDH and malic enzyme (ME) activities were observed in the CF than MF tilapia but higher SGR, FE, PER and liver G6PDH, 6PGDH and ME activities were observed in tilapia fed the starch diet than those fed the glucose diet. This suggested that carbohydrate utilization by sturgeon was more affected by feeding strategy whereas tilapia was more affected by carbohydrate source. Furthermore, white sturgeon can utilize carbohydrates better than hybrid tilapia regardless of feeding strategy and carbohydrate source.
Resumo:
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 mu g g(-1)) or 3 reGH injections (0.25 mu g g(-1) every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 mu g g(-1)) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 mu g g(-1)) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70 % SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.
Resumo:
Behavioral and ventilatory parameters have the possibility of predicting the stress state of fish in vivo and in situ. This paper presents a new image-processing algorithm for quantifying the average swimming speed of a fish school in an aquarium. This method is based on the alteration in projected area caused by the movement of individual fish during frame sequences captured at given time intervals. The image enhancement method increases the contrast between fish and background, and is thus suitable for use in turbid aquaculture water. Behavioral parameters (swimming activity and distribution parameters) and changes in ventilation frequency (VF) of tilapia (Oreochromis niloticus) responded to acute fluctuations in dissolved oxygen (DO) which were monitored continuously in the course of normoxia, falling DO level, maintenance of hypoxia (three levels of 1.5, 0.8 and 0.3 mg l(-1)) and subsequent recovery to normoxia. These parameters responded sensitively to acute variations in DO level; they displayed significant changes (P < 0.05) during severe hypoxia (0.8 and 0.3 mg l(-1) level) compared with normoxic condition, but there was no significant difference under conditions of mild hypoxia (1.5 mg l(-1) level). There was no significant difference in VF between two levels of severe hypoxia 0.8 and 0.3 mg l(-1) level during the low DO condition. The activity and distribution parameters displayed distinguishable differences between the 0.8 and 0.3 mg l(-1) levels. The behavioral parameters are thus capable of distinguishing between different degrees of severe hypoxia, though there were relatively large fluctuations. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We used nested-polymerase chain reaction (PCR) to detect Roundup Ready soybean in aquatic feeds and feeding tilapias. A template concentration of 10(-10) g mu L-1 DNA solution could be detected with a dilute degree of 0.01%. Most (90.6%) of the aquatic feeds containing soybean byproduct included exogenous DNA segments. We also compared genetically modified (GM) soybean with non-GM soybean diets in feeding tilapias (Oreochromis niloticus, GIFT strain) and examined the residual fragments (254 bp) of GM soybeans. Tilapias receiving GM soybean diets had DNA fragments in different tissues and organs, indicating that exogenous GM genes were absorbed systemically and not completely degraded by the tilapia's alimentary canal.
Residues of enrofloxacin, furazolidone and their metabolites in Nile tilapia (Oreochromis niloticus)
Resumo:
The residues of enrofloxacin and its metabolite in Nile tilapia (Oreochromis niloticus) were studied after oral dose of 50 mg/kg for 7 days. To find the differences between Nile tilapia and Chinese shrimp (Penaeus chinensis), the residues of enrofloxacin in P chinensis were also studied under the same conditions. The results showed that enrofloxacin metabolized into ciprofloxacin in both Nile tilapia and P chinensis, the maximal concentration of enrofloxacin in muscle, liver and plasma of Nile tilapia were 3.61 mu g/g, 5.96 mu g/g, 1.25 mu g/ml respectively, and ciprofloxacin in muscle was 0.22 mu g/g. The maximal concentration of enrofloxacin and ciprofloxacin in P chinensis were 1.68 mu g/g and 0.07 mu g/g respectively. The predicted withdrawal time for Nile tilapia was 22 days, and P. chinensis was 12 days under our experiment conditions. The residues of fitrazolidone [3-(5-nitrofurfurylidenamino)-2-oxazolidinone] and its main metabolite 3-amina-2-oxazolidinone (AOZ) in Nile tilapia were first determined by HPLC/MS. Results showed that after oral dose of 30 mg/kg for 7 days, the maximum concentration of farazolidone in Nile tilapia was 413 mu g/kg after 6 h, whereas AOZ residue reached its maximum (31 mu g/kg) right after stopping treatment. In contrast to the high metabolic rate of furazolidone, AOZ was very difficult to eliminate in vivo, thus the withdrawal time of furazolidone in Nile tilapia was 22 days at least. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
将杜仲、当归、黄芪、枸杞等10味中草药均匀粉碎后配制成复方制剂,按质量分数为0(对照组)、1%(A组)、3%(B组)、6%(C组)添加到饲料中投喂罗非鱼Oreochromis niloticus,分别在饲养试验的第4、11、18、25、32天采样,检测其血清溶菌酶活性、头肾巨噬细胞吞噬活性、血清杀菌活性、红细胞比容等免疫指标的变化,并在最后一次采样中检测其脾脏脏器系数。用嗜水气单胞菌Aeromonas hydrophila对试验鱼进行人工感染试验,分析中草药对鱼体免疫功能及免疫保护率的增强作用。饲养结果表