3 resultados para OPIATES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The orbitofrontal cortex is involved in the reinforcing effects of drugs of abuse. However, how the dynamic activity in OFC changes during opiate administration and withdrawal period has not been investigated. We first tested the effects of opiates and dr
Resumo:
Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.
Resumo:
Drug-associated cue-induced relapse to drug seeking causes most difficulties of therapy for drug addiction. Addicts are exposed to two forms of environmental stimuli during drug-taking: contextual stimuli (e.g. a house in which the drug is consumed) and discrete stimuli (DS, e.g. a crack pipe or a syringe for drug). These stimuli become contextual cues and discrete cues, respectively. The incentive value of contextual cues plays a great role in opiates relapse. Compared with drug self-administration model, conditioned place preference (CPP) reflects the approach behavior for drug cues, not concerned with acquisition of operant behaviors. The present study aimed to investigate the role of basolateral amygdala (BLA) and hippocampus in the effect of opiates-related contextual cues using CPP model. Establishing DS-dependent or contextual cues-dependent CPP, the effect of BLA or hippocampus inactivation prior to training phase on acquisition of contextual cues-opiates association was evaluated. Inactivation prior to test phase was used to evaluate roles of BLA and hippocampus in expression of contextual cues-dependent morphine CPP. The main results were as follows: Inactivation of BLA or dorsal hippocampus selectively impaired acquisition of contextual cue-dependent CPP, but inactivation of ventral hippocampus had no impact on acquisition of either DS-dependent or contextual cue-dependent morphine CPP. Inactivation of BLA selectively inhibited expression of contextual cue-depended CPP. Inactivation of ventral hippocampus inhibited expression of both DS-dependent and contextual cue-dependent morphine CPP. These results suggest that BLA and dorsal hippocampus contribute to contextual cue association with opiates but not DS-opiates association. BLA and ventral hippocampus play important roles in incentive value of contextual cues. The present study provides more information for the neurological substrates underlying contextual cues associated with opiates.