7 resultados para OCPs
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This study was conducted to measure the levels of 23 PCB congeners and 6 organochlorine pesticides (OCPs) in human milk and three food types collected from Luqiao and Pingqiao in Zhejiang Province, China. An effort was also made to explore the potential health risk for the mothers and breast-fed infants living in these two localities. Luqiao was selected as the sampling site because it is the largest place for the disassembly of obsolete transformers and electrical waste in China. Pingqiao, located 100 kin NW of Luqiao, is not known to be a place for any electronic or electrical waste and hence was chosen as the control site. Both localities are important agricultural places in the province. The organochlorines were measured in the samples using the GC-PECD technique. Micro-EROD bioassay method was also used as a complement of the chemical analysis to estimate the TEQ levels of dioxin-like PCBs in human milk. The data showed that the human milk, rice, hen egg, and fish samples from Luqiao were more heavily contaminated with PCBs than those from Pingqiao, suggesting that the mothers and their breast-fed infants in Luqiao tended to receive greater exposure to PCBs than those living in Pingqiao. The OCP levels in the two localities were found comparable, suggesting that the major source of contamination with these pesticides was from their agricultural uses. Significant correlation (R-2 = 0.87, P < 0.001) of PCB TEQs was found between the bioassay and chemical analysis method, suggesting that micro-EROD is an effective method for comprehensive determination of TEQ levels in human milk. Comparison with literature data showed that the PCB levels in milk samples from Luqiao were significantly higher than those from localities in other Chinese provinces and comparable to those in developed or industrialized countries. (c) 2007 Published by Elsevier B.V.
Resumo:
Prenatal exposures to persistent organic pollutants were assessed using the levels of PCBs and organochlorine pesticides (OCPs) measured in cord blood and meconium samples from Luqiao and two other localities of the Zhejiang province in China. Luqiao is a town with the largest site for disassembly of PCB-containing obsolete transformers and electrical waste in China. The other two localities Pingqiao (100 km NW of Luqiao) and Lin'an (500 km NW of Luqiao) are towns without known electronic or electrical waste sites. A total of 23 PCB congeners (including 12 dioxin-like) and 6 OCPs were measured using the traditional GC-mu ECD technique. Micro-EROD bioassay was additionally used to measure TCDD-based TEQ levels of the 12 dioxin-like PCBs. Significant correlations were found between the TEQs measured by the two methods, supporting the application of micro-EROD as a practical toot for complementing the chemical analysis. The data showed that beta-HCH, p,p'-DDE, and 6 PCB congeners (101, 138 153, 180, 183, and 187) were the predominant pollutants, with PCB 138 being the best indicator (predictor) for total PCB levels. Cord blood and meconium from Luqiao have higher levels of PCBs than those from the other two localities, suggesting that a disassembly site for electronic and electric waste would provide an environment for greater exposure to these chemicals. The cord blood or meconium levels of beta-HCH, though likewise considerably high, were comparable in the three localities. Similar findings were observed for p,p'-DDE. Pollution by these OCPs might have come from past use of agricultural pesticides in the three localities. (c) 2007 Published by Elsevier B.V.
Resumo:
Polyurethane foam unit (PFU) systems were collected from 11 lakes and three rivers in the Yunnan Plateau, China and, the PFU extrusion liquids, were analyzed for organochlorine pesticides (OCPs) by gas chromatography with electron capture detection (GCECD). The concentrations of pp'-DDE, HCB and HCHs were undetectable to 1.86 mu g l(-1) (mean 0.27 mu g l(-1)), undetectable to 0.72 mu g l(-1) (mean 0.11 mu g l(-1)), and 0.24-21.95 mu g l(-1) (mean 7.39 mu g l(-1)) respectively in lakes; and those in rivers were undetectable to 0.23 mu g l(-1) (mean 0.08 mu g l(-1)), 0.68-2.93 mu g l(-1) (mean 1.70 mu g l(-1)), and 2.71-37.56 mu g l(-1) (mean 17.01 mu g l(-1)) respectively. Notably, some residue levels of OCPs exceeded the US National Recommended Water Quality Criteria, implying Yunnan has levels of OCPs potentially harmful to human health. Further, the contamination by OCPs showed an obvious spatial distribution pattern. Amongst the lakes, Dianchi, Xingyun, Lugu and Yangzonghai had the highest OCP levels dominated by beta-HCH, whereas among rivers, Nujiang and Lancang Rivers had the highest contents of OCPs dominated by alpha-HCH. This demonstrates that HCHs are the predominant contaminants and some point sources of HCHs may still exist in Yunnan. The pollution levels in Yunnan were compared with other studies, suggesting the PFU method is suitable for long-term on-line monitoring of trace OCPs in aquatic ecosystems. Therefore, continuous studies monitoring OCPs in lakes and rivers are needed to further understand the future trend of contamination. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We used polyurethane foam units (PFUs) to collect persistent organic pollutants (POPs) from four sites in Baiyangdian Lake in July 2003. Following extraction from the PFUs, relative concentrations of seven organochlorine pesticides (OCPs) and ten polychlorinated biphenyls (PCBs) were determined by gas chromatography. OCPs and PCBs were detected in the microbial communities from all the four sampling stations. In terms of the total concentration of POPs (OCPs+ PCBs), two river estuary stations had more POP (18.45 mu g/L and 9.77 mu g/L) than the two mid-lake stations (4.75 mu g/L and 5.21 mu g/L), indicating that Baiyangdian Lake was significantly impacted by inflow from the Fu River and Baigou River.
Resumo:
农药对产地环境,特别是对土壤的广泛污染严重威胁农产品安全和人类健康。因此,本文采用建立的除草剂和有机氯农药(OCPs)残留分析方法,开展了辽北地区土壤农药残留特征、阿特拉津和乙草胺田间消解动力学、土壤农药残留对农产品安全影响等方面研究。主要研究结果如下: 1. 分别建立了土壤、大米、蔬菜、玉米中3种除草剂和8种OCPs多残留分析方法。方法检出限介于0.04~1.30 ng•g-1之间;11种农药在0.01 (0.02)~1.0 (2.0) mg•L-1范围内线性良好,相关系数介于0.9963-0.9998之间;平均回收率介于71%-117%之间、相对标准偏差小于14.4%。 2. 阿特拉津和乙草胺在辽北农田土壤普遍残留;丁草胺、六氯苯、狄氏剂和艾氏剂在部分土壤有残留;乙草胺和丁草胺相对其它农药残留较高;阿特拉津、六氯苯、狄氏剂和艾氏剂残留量与相关报道和标准相比较低。除艾氏剂外,检出农药残留量经Box-Cox变换后,均服从正态分布。阿特拉津、乙草胺、丁草胺、六氯苯在不同土壤利用类型之间存在显著差异(P<0.05)。 3. 玉米地土壤中阿特拉津和乙草胺消解动态符合一级反应动力学模式,阿特拉津消解半衰期在12.2~59.8d之间,乙草胺在18.5~54.6d之间。喷施地阿特拉津和乙草胺消解速率约为对照地的2~5倍,且喷施量越大,消解越快。 4. 11种农药在辽北蔬菜、大米、玉米中残留较低,仅阿特拉津、六氯苯、乙草胺和丁草胺在部分农产品中有残留,其在土壤中残留通过蔬菜、大米和玉米给消费者带来的总膳食风险较低。大田试验进一步说明在试验区域喷施4倍最大推荐剂量阿特拉津或乙草胺也不会对玉米安全产生影响。
Resumo:
调查了红枫湖周边水稻土的7种多氯联苯(PCBs)和13种有机氯农药(OCPs)的含量分布.结果显示,DDTs及其代谢产物、HCHs的异构体、异狄氏剂、七氯等有机氯农药及PCB 28和PCB 52在所有样品中均被检出.与国内外污染区相比,PCBs含量较低.研究区土壤中污染物的组成结果类似,PCBs以3~5氯取代的同属物为主,农药以DDTs为主.剖面土壤中∑PCBs含量范围为8.9~55.9 ng/g,主要以3~5氯取代的PCBs为主,平均占PCBs总量的89%.∑DDTs含量为4.7~42.6 ng/g,以p,p′-DDE,p,p′-DDT为主.DDT/(DDD+DDE)的比率表明红枫湖地区水稻田中DDTs的降解速率不同,暗示其环境条件的差异.α-HCH/γ-HCH为0.28~0.90,表明红枫湖地区水稻田中HCHs在环境中残留时间很长,经历了光解和生物作用等变化.PCBs对TEQ的贡献较低,为0.06~0.51 pg/g.
Resumo:
本研究以红枫湖为主要研究对象,对环境各介质中PCBs和OCPs进行了研究,讨论了理化因素TOC、粒度、SPM、微生物等对于PCBs和OCPs的影响,对各介质中PCBs和OCPs的组成进行了分析,讨论了红枫湖地区PCBs和OCPs的来源,并对其污染水平进行了评价,得到以下几点认识: 1、对红枫湖水体和沉积物的理化性质进行了分析,和洱海进行了对比。湖泊沉积物有机质含量和C/N比值表明红枫湖沉积物有机质主要来源于河流输入和湖泊内部,洱海主要以湖泊内源为主,与后面PCBs和OCPs分析结果相符。湖泊沉积物有机质及DNA呈现同一规律,表层是有机质和DNA的含量较高的区域,表层至底层整体呈逐渐降低的趋势,表明表层是微生物量和活性最高的层段,有机质的降解主要发生在此区域。湖泊沉积物粒度与有机质和DNA变化趋势一致,暗示了有机质的降解过程主要发生在表层,SRI和SRB的分析表明微生物在有机质降解过程中起着至关重要的作用。 2、红枫湖沉积物中7种PCBs的含量范围在3.2~31.6ng/g之间,主要以PCB28和PCB52为主。其中PCB28的含量范围在0.5~4.6ng/g,平均为1.8ng/g, PCB52含量在0.4~28.1ng/g。PCB28和PCB52低氯取代的PCBs占PCBs总量的60%以上。各点沉积物中PCBs的组成基本一致,其含量的变化主要与其输入来源和环境条件相关。沉积物中PCBs随深度整体呈现降低的趋势,但表层含量比次表层低,表明近年PCBs的输入降低。PCBs与TOC和粒径呈现较显著的正相关关系,与其自身的理化性质相关,PCBs具有较高的憎水性,倾向于在颗粒态中分布,也暗示了其来源。 3、红枫湖沉积物中13种OCPs的组成主要以HCHs和DDTs为主。其中HCHs的含量范围1.6~8.9ng/g,平均值为3.2ng/g,沉积物柱均值表现为HW>DB>HE>JJD;DDTs的含量范围在0.9~25.7ng/g,平均值为7.8ng/g,沉积物柱均值表现为HW>HE>DB>JJD。HCHs按其组成来看,以β-HCH和γ-HCH为主,DDTs以p,p’-DDE和p,p’-DDT为主。α-HCH/γ-HCH的比值在范围在0.1~3.0之间,表明HCH在环境中发生了改变,而且林丹的用量高于混合HCHs。DDT/DDE+DDD的比值基本都小于1,暗示DDTs在环境中发生了较长期的变化,β-HCH和p,p’-DDE的高含量也暗示了大气来源可能也是红枫湖地区OCPs的主要来源之一。 4、红枫湖湖水、汇入汇出河流及其周边土壤中PCBs和OCPs的分析,显示PCBs和OCPS在过滤后水中含量较低,主要分配在悬浮颗粒物中,悬浮颗粒物中的PCBs和OCPs组成与周边土壤中的组成基本一致。HCHs和DDTs的组成和α-HCH/γ-HCH、DDT/DDE+DDD的比值暗示水中悬浮颗粒物及其PCBs和OCPs主要来源于周边土壤和大气沉降。 5、 红枫湖后五鱼体内PCBs主要以4~6氯取代的PCBs的同系物为主,OCPs以HCHs和DDTs为主。鱼体内PCBs和OCPs对于水体的富集系数达到102~105。PCBs富集系数随氯取代数目的增加而增加,表明其生物有效性随氯取代数目的增加而增加,高氯取代的PCBs更容易通过食物链在高营养级生物体内富集,对人体造成危害。 6、 大气总悬浮颗粒物TSP中及背景区土壤中PCBs和OCPs的分析,与其它环境介质中结果基本一致。红枫湖地区大气、水、沉积物、生物和土壤各环境介质中PCBs和OCPs的组成基本一致,表明其来源具有一致性。α-HCH/γ-HCH和 DDT/DDE+DDD的值,及β-HCH、p,p’-DDE的高的比例,暗示红枫湖地区OCPs在环境中经历了较长时间的变化,而且大气长距离传输对于该区OCPs和PCBs的来源具有一定的贡献。从各因子的分析可以得出,红枫湖为该地区PCBs和OCPs的汇。 7、我国PCBs和DDTs、HCHs的含量除了典型区外,在国内外都处于较低和中等污染水平,红枫湖地区整体处于较低污染水平。根据Long和Chapman等对沉积物中POPs的评价方法,红枫湖沉积物中PCBs只有一个样品处于ERL和ERM之间,其它都低于ERL值,表明PCBs对生物造成不利影响的可能性较低;DDTs的值大部分处于ERL和ERM值之间,对生物造成不利影响的可能性较大;γ-HCH的值都低于TEC值,对生物的潜在影响较小。