64 resultados para Nutrient Assimilation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient concentrations in seawater, and C, N, P, Si and chlorophyll a content in different-sized particulates were measured in Jiaozhou Bay, and C, N, P, Si composition in different-sized fractions of phytoplankton and their ecological responses to nutrient structure of the seawater were studied. Microphytoplankton and nanophytoplankton were dominant in Jiaozhou Bay. High C (16.50-20.97 unol L-1), N (2.46-2.99 mu mol L-1) and low P (0.06-0.12 mu mol L-1), Si (0.18-0.57 mu mol L-1) content, and high N/P (24.7-64.6) and low SUP (4.4-10.8), Si/N (0.06-0.20) ratios were found in all sized groups of particulates. These values reflected the elemental compositions of different-sized fractions of phytoplankton as being an ecological response to the nutrients in the seawater. The ratios deviated significantly from the Redfield values. The nutrient composition of seawater and particulates and their relationship to chlorophyll a showed that phytoplankton growth was possibly limited by Si. Si limitation appears favorable for controlling the ecological equilibrium of Jiaozhou Bay. Different-sized fractions of phytoplankton had different suitability to nutrient structures of the seawater. Among phytoplankton size groups, nanophytoplankton and microphytoplankton growths were more adaptable in eutrophic Jiaozhou Bay, and more competitive for assimilation of Si. This is consistent with their diatom-dominated composition, controlling the biomass and productivity of phytoplankton in Jiaozhou Bay. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing trend of air temperature along with the climate warming has been accepted gradual-ly by scientists and by the general public. Qinghai-Xizang Plateau, a unique geographic unit due to high-altitude climate, is one of the most susceptible regions to climate warming. Its ecosystem is very fragile and sensi-tive to climate change. In order to get a better understanding of the impacts of climate warming on the nutrient contents of herbage grown in Qinghai-Xizang Plateau, a simulative study was implemented at Daban Moutain by using temperature differences resulted from sites selected at different altitudes and nutrient contents and in vitro digestibility were determined for assessing the quality of the grown herbage. There were significant downtrends in crude protein (CP), ether extract (EE) and nitrogen free extract (NFE) contents of herbage along with the increase of temperature. It had a positive correlation between temperature and content of acid detergent fibre (ADF), acid detergent lignin (ADL) in herbage. In vitro digestibility of herbage decreased along with the in-crease of temperature. The results of this study indicated that climate warming significantly influence nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. It is suggested that the future climate warming especially the gradual rise of the night temperature could cause negative effect on herbage quality grown in Qinghai-Xizang Plateau by decreasing CP, EE, and NFE contents and increasing some indi-gestible ingredients such as crude fibre (CF), neutral detergent fibre (NDF), ADF, and ADL. This, conse-quently, decreases the ruminant assimilation ability.