1 resultado para Nuova Bassani
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.