49 resultados para Numerical and experimental researches

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-microbuckling is a fundamental feature of compressive failure process for the unidirectional-fiber-reinforced composites and laminated composites. The post-microbuckling behavior of composites under compression in the light of the Kevlar49-reinforced 648/BF3.400 (brittle epoxy) and EP (flexible epoxy) is studied, theoretically and experimentally. Analytical results of compressive strength are in good agreement with experimental results, qualitatively and quantitatively. By the experimental research, the post-microbuckling feature of the advancing kink band model is clearly displayed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocyclones are widely used in industry, of which the geometrical design using CFD techniques is gaining more popularity in recent years. In this study, the Euler-Euler approach and the Reynolds stress model are applied to simulate the liquid-solid flowfield in a hydrocyclone. The methodology is validated by a good agreement between experimental data and numerical results. Within the research range, the simulation indicates that the liquid-solid separation mainly occurs in the conical segment, and increasing conical height or decreasing cylindrical height helps to improve the grade efficiencies of solid particles. Based on these results, two of the same hydrocyclones are designed and installed in series to establish a liquid-solid separation system. Many experiments are then conducted under different conditions, in which the effects of the water cut and the second hydrocyclone on the separation are investigated. The results also confirm that smaller solid particles are more susceptible to the inlet conditions, and the second hydrocyclone plays a more important role as the water cut reduces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exhaust gases from industrial furnaces contain a huge amount of heat and chemical enthalpy. However, it is hard to recover this energy since exhaust gases invariably contain combustible components such as carbon monoxide (CC). If the CO is unexpectedly ignited during the heat recovery process, deflagration or even detonation could occur, with serious consequences such as complete destruction of the equipment. In order to safely utilize the heat energy contained in exhaust gas, danger of its explosion must be fully avoided. The mechanism of gas deflagration and its prevention must therefore be studied. In this paper, we describe a numerical and experimental investigation of the deflagration process in a semi-opened tube. The results show that, upon ignition, a low-pressure wave initially spreads within the tube and then deflagration begins. For the purpose of preventing deflagration, an appropriate amount of nitrogen was injected into the tube at a fixed position. Both simulation and experimental results have shown that the injection of inert gas can successfully interrupt the deflagration process. The peak value of the deflagration pressure can thereby be reduced by around 50%. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes a systematic study of argon plasmas in a bell-jar inductively coupled plasma (ICP) source over the range of pressure 5-20 mtorr and power input 0.2-0.5 kW, Experimental measurements as well as results of numerical simulations are presented. The models used in the study include the well-known global balance model (or the global model) as well as a detailed two-dimensional (2-D) fluid model of the system, The global model is able to provide reasonably accurate values for the global electron temperature and plasma density, The 2-D model provides spatial distributions of various plasma parameters that make it possible to compare with data measured in the experiments, The experimental measurements were obtained using a tuned Langmuir double-probe technique to reduce the RF interference and obtain the light versus current (I-V) characteristics of the probe. Time-averaged electron temperature and plasma density were measured for various combinations of pressure and applied RF power, The predictions of the 2-D model were found to be in good qualitative agreement with measured data, It was found that the electron temperature distribution T-e was more or less uniform in the chamber, It was also seen that the electron temperature depends primarily on pressure, but is almost independent of the power input, except in the very low-pressure regime. The plasma density goes up almost linearly with the power input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polarization characteristics of electro-optical (EO) switches using fiber Sagnac interferometer (FSI) structures are theoretically investigated. Analytical solutions of output fields are presented when the twists and birefringence in a Sagnac loop are considered. Numerical calculations show that the twists of fiber, the orientation of the inserted phase retarder, and the splitting ratio of the coupler will influence both the output intensity and the output polarization properties of the proposed switch. A polarization-independent EO switch based on a Sagnac interferometer and a PUT bar was experimentally implemented, which showed good coincidence with the analytical results. The experiment showed a switch with 22 dB extinction ratio and less than 31.1 ns switching time. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier transformation (FT) has been used in the theoretical line shape analysis of Franz-Keldysh oscillations (FKOs) in detail by numerical simulations. FKOs from the surface-intrinsic-n(+) GaAs structure were obtained in photoreflectance (PR) measurements with various modulation light intensities and with different strengths of bias light illumination, which were used to change the static electric field in the intrinsic layer of the sample. The FT spectra of the PR spectra, including the real part, imaginary part, and the modulus, were very consistent with the theoretical line shapes. The ratio of the square root of the reduced mass (root mu (L)/root mu (H)) and the ratio of transition strength of the electron heavy hole to the electron light hole were obtained from the PT spectra. In addition, the electric field in the intrinsic layer of the sample without and with bias illumination and the modulation field induced by photomodulation were also obtained. (C) 2000 American Institute of Physics. [S0021-8979(00)02123-X].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-mode analysis method on the pull-in instability of micro-structure under electrostatic loading is presented. Taylor series are used to expand the electrostatic loading term in the one-mode analysis method, which makes analytical solution available. The one-mode analysis is the combination of Galerkin method and Cardan solution of cubic equation. The one-mode analysis offers a direct computation method on the pull-in voltage and displacement. In low axial loading range, it shows little difference with the established multi-mode analysis on predicting the pull-in voltages for three different structures (cantilever, clamped-clamped beams and the plate with four edges simply-supported) studied here. For numerical multi-mode analysis, we also show that using the structural symmetry to select the symmetric mode can greatly reduce both the computation effort and the numerical fluctuation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

海底管道涡激振动和管道周围海床冲刷是海流--管道--海床之间复杂的动力耦合问题.文章应用量纲分析方法对海流、管道与海床之间的动力耦合作用进行了分析,确定了在实验模拟中应遵循的相似准则.在此基础上,研制了一套能模拟海流、海床与海底管道之间相互作用的实验模拟装置.初步实验结果表明文中研制的实验模拟装置能够模拟典型海洋环境下海底管道的涡激振动和管道周围海床冲刷等问题.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new statistical formulation and a relevant experimental approach to determine the growth rate of microcracks were proposed. The method consists of experimental measurements and a statistical analysis' on the basis of the conservation law of number density of microcracks in phase space. As a practical example of the method, the growth rate of microcracks appearing in an aluminium alloy subjected to planar impact loading was determined to be ca. 10 mu m/mu s under a tensile stress of 1470 MPa and load duration between 0.26 mu s and 0.80 mu s.