53 resultados para Nonlinear dynamical effect
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).
Resumo:
We try to connect the theory of infinite dimensional dynamical systems and nonlinear dynamical methods. The sine-Gordon equation is used to illustrate our method of discussing the dynamical behaviour of infinite dimensional systems. The results agree with those of Bishop and Flesch [SLAM J. Math. Anal. 21 (1990) 1511].
Resumo:
The statistical correlation between an eruptive prominence and the coronal transient associated with this prominence implies that there should be a relationship between these two kinds of dynamical processes. This paper analyzes the dynamical effect of a plasma
Resumo:
Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear varistors with higher concentration additives have been fabricated by sol-gel and standard solid-state reaction method, of which the best sample has a very high threshold voltage of E-b = 3300 V/mm. The effect of sintering processes, sintering temperature and sintering time, and that of additive concentration of Bi2O3 on E-b of the samples are systematically investigated. The results show that the great merit of sol-gel method is its high threshold voltage obtained by a lower sintering temperature than the solid-state reaction method. The present work also shows that five phases including solid-state sintering, rich Bi liquid phase formation and ZnO as well as other additive dissolution, ZnO grain growth, the secondary phase sufficient formation and evolution have been experienced at different sintering temperatures. The hole type defect and nonhomogeneity of the microstructure will lead to the decrease of threshold voltage, i.e., the grain size and the homogeneity of the material will be important factors and directly affect the characteristic of the varistor. The sintering characteristic and the influence of Bi2O3 content on the threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
For a class of nonlinear dynamical systems, the adaptive controllers are investigated using direction basis function (DBF) in this paper. Based on the criterion of Lyapunov' stability, DBF is designed which guarantees that the output of the controlled system asymptotically tracks the reference signals. Finally, the simulation shows the good tracking effectiveness of the adaptive controller.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
Both earthquake prediction and failure prediction of disordered brittle media are difficult and complicated problems and they might have something in common. In order to search for clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model resembling disordered brittle media are examined. It is found that the failure manifests evolution-induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-specificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar to the question of predictability of earthquakes. However, our model shows that strong stress fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues for earthquake forecasting.
Resumo:
A mechanism for the reversed field pinch (RFP) dynamo is proposed, based on the nonlinear Hall effect of a saturated helical MHD instability. The sign and magnitude of the effect are shown to be those required for the RFP dynamo. Predictions of the model are in accord with RFP fluctuation measurements.
Resumo:
We experimentally investigate the evolution of an angularly resolved spectrum of third harmonic generated by infrared femtosecond laser pulse filamentation in air. We show that at low pump intensity, phase matching between the fundamental and third-harmonic waves dominates the nonlinear optical effect and induces a ring structure of the third-harmonic beam, whereas at high pump intensity, the dispersion properties of air begin to affect the angular spectrum, leading to the formation of a nonlinear X wave at third harmonic.
Resumo:
长期以来,远场光学荧光显微镜凭借其非接触、无损伤、可探测样品内部等优点,一直是生命科学中最常用的观测工具。但由于衍射极限的存在,使传统的宽场光学显微镜横向和纵向的分辨率分别仅约为230 nm和1000 nm。为了揭示细胞内分子尺度的动态和结构特征,提高光学显微镜分辨率成为生命科学发展的迫切要求,在远场荧光显微镜的基础上,科学家们已经发展出许多实用的提高分辨率甚至超越分辨率极限的成像技术。例如,采用横向结构光照明提高横向分辨率到约100 nm,利用纵向驻波干涉效应将纵向分辨率提高5~10倍。然而,直到在光学荧光显微镜中引入非线性效应后,衍射极限才被真正突破,如受激荧光损耗显微镜利用非线性效应实现了30~50 nm的三维分辨率。另外应用荧光分子之间能量转移共振原理以及单荧光分子定位技术也可以突破衍射极限,甚至可以将分子定位精度提高到几个纳米的量级。
Resumo:
Self-assembled semiconductor quantum dot is a new type of artificially designed and grown function material which exhibits quantum size effect, quantum interference effect, surface effect, quantum tunneling-Coulumb-blockade effect and nonlinear optical effect. Due to its advantages of less crystal defects and relatively simpler fabrication technology, this material may be of important value in the research of future nanoelectronic device. In the order of vertical transport, lateral transport and charge storage, recent advances in the electronic properties of this material are brefly introduced, and the problems and perspectives are analyzed.
Resumo:
This paper analyzes landsliding process by nonlinear theories, especially the influence mechanism of external factors (such as rainfall and groundwater) on slope evolution. The author investigates landslide as a consequence of the catastrophic slide of initially stationary or creeping slope triggered by a small perturbation. A fully catastrophe analysis is done for all possible scenarios when a continuous change is imposed to the control parameters. As the slip surface continues and erosion due to rainfall occurs, control parameters of the slip surface may evolve such that a previously stable slope may become unstable (e.g. catastrophe occurs), when a small perturbation is imposed. Thus the present analysis offers a plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in the history of the slope. It is found, by analysis on the nonlinear dynamical model of the evolution process of slope built, that the relationship between the action of external environment factors and the response of the slope system is complicatedly nonlinear. When the nonlinear action of slope itself is equivalent to the acting ability of external environment, the chaotic phenomenon appears in the evolution process of slope, and its route leading to chaos is realized with bifurcation of period-doublings. On the basis of displacement time series of the slope, a nonlinear dynamic model is set up by improved Backus generalized linear inversion theory in this paper. Due to the equivalence between autonomous gradient system and catastrophe model, a standard cusp catastrophe model can be obtained through variable substitution. The method is applied to displacement data of Huangci landslide and Wolongsi landslide, to show how slopes evolve before landsliding. There is convincing statistical evidence to believe that the nonlinear dynamic model can make satisfied prediction results. Most important of all, we find that there is a sudden fall of D, which indicates the occurrence of catastrophe (when D=0).
Resumo:
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.