40 resultados para Nonlinear differential equation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier-Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.
Resumo:
The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.
Resumo:
Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.
Resumo:
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.
Resumo:
We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.
Resumo:
基于奇异值分解和能量最小原则,提出了一种自适应图像降噪算法,并给出了基于有界变差的能量降噪模型的代数形式。通过在矩阵范数意义下求能量最小,自适应确定去噪图像重构的奇异值个数。该算法的特点是将能量最小法则和奇异值分解结合起来,在代数空间中建立了一种自适应的图像降噪算法。与基于压缩比和奇异值分解的降噪方法相比,由于该算法避免了图像压缩比函数及其拐点的计算,因此具有快速去噪和简单可行的优点。实验结果证明,该算法是有效的。
Resumo:
With the great development of Tianjing New Coastal District economy, people need more land to build and live. Land subsidence, which is caused by its special engineering geological conditions, has restricted the further development in the district. Soft soil consolidation is main factor of land subsidence ;thus , on the basis of consolidation theory, the paper make further study on soft soils one-dimension nonlinear consolidation which contains two parts:(1) the nonlinear consolidation of permeability coefficient and compressibility coefficient changing with time and depth, which means real one-dimension nonlinear consolidation;(2) the non-homogeneous consolidation of permeability coefficient and compressibility coefficient only changing with depth. Firstly, nonlinear characteristics of soft soils are elaborated. Hypoplastic theory is introduced to establish a modified soft soils nonlinear constitutive model; the nonlinear governing equation of compressibility coefficient is built, and the nonlinear characteristics of compressibility coefficient are analyzed. Secondly, Considering Load Fluctuation and soil thickness changing ,the consolidation characteristics of single layer is discussed in the paper; meanwhile, on the basis of the Davis and Raymond’s hypothesis and single layer nonlinear consolidation equation, the doubled-layer one-dimension nonlinear consolidation equation is also derived. The solution of the equation is obtained by analytical method, and the consolidation characteristics of doubled-layer soft soil nonlinear theory is also analyzed. Finally, based on assumption that permeability coefficient and compressibility coefficient is varying along depth, single layer soil one-dimension non-homogeneous consolidation differential equation is derived; and the approximate solution is obtained. Furthermore, the single layer non-homogeneous consolidation is extended to double layer non-homogeneous consolidation theory. By using parabolic differential scheme, the matrix equation is established; and the solution of the matrix equation is obtained by chase method. Consolidation characteristics of soil soft single (double) layer non-homogeneous consolidation theory and Terzaghi’s theory are also discussed.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.