116 resultados para Nonlinear contact stiffness
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expression is well known for indentation in elastic and in elastic-plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that the unloading rate is sufficiently fast. Furthermore, the same expression holds true for both fast loading and unloading. These results should provide a sound basis for using the relationship for determining properties of viscoelastic solids using indentation techniques.
Resumo:
We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. Although the same expres
Resumo:
The viscoelastic deformation of Ce-based bulk metallic glasses (BMGs) with low glass transition temperature is investigated at room temperature. Contact stiffness and elastic modulus of Ce-based BMGs cannot be derived using the conventional Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)]. The present work shows that the time dependent displacement of unloading segments can be described well by a generalized Kelvin model. Thus, a modified Oliver-Pharr method is proposed to evaluate the contact stiffness and elastic modulus, which does, in fact, reproduce the values obtained via uniaxial compression tests. (c) 2007 American Institute of Physics.
Resumo:
Three adhesion contact models, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-Muller-Toporov) and MD (Maugis-Dugdale) are compared with the Hertz model in dealing with the nano-contact problems. It has been shown that the dimensionless load parameter, $\bar{P}=P/(\pi\Delta\gamma R)$, and the transition parameter, $\Lambda$, have significant influences on the contact stiffness (contact area) at micro/nano-scale and should not be ignored in shallow nanoindentation.
Resumo:
A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432748]
Resumo:
When the atomic force microscopy (AFM) in tapping mode is in intermittent contact with a soft substrate, the contact time can be a significant portion of a cycle, resulting in invalidity of the impact oscillator model, where the contact time is assumed to be infinitely small. Furthermore, we demonstrate that the AFM intermittent contact with soft substrate can induce the motion of higher modes in the AFM dynamic response. Traditional ways of modeling AFM (one degree of freedom (DOF) system or single mode analysis) are shown to have serious mistakes when applied to this kind of problem. A more reasonable displacement criterion on contact is proposed, where the contact time is a function of the mechanical properties of AFM and substrate, driving frequencies/amplitude, initial conditions, etc. Multi-modal analysis is presented and mode coupling is also shown. (c) 2006 Published by Elsevier Ltd.
Resumo:
The perturbation expansion method is used to find the effective thermal conductivity of graded nonlinear composites having thermal contact resistance on the inclusion surface. As an example, we have studied the graded composites with cylindrical inclusions immersed in a homogeneous matrix. The thermal conductivity of the cylindrical inclusion is assumed to have a power-law profile of the radial distance r measured from its origin. For weakly nonlinear constitutive relations between the heat flow density q and the temperature field T, namely, q = -mu del T - chi vertical bar del T vertical bar(2) del T, in both the inclusion and the matrix regions, we have derived the temperature distributions using the perturbation expansion method. A nonlinear effective medium approximation of graded composites is proposed to estimate the effective linear and nonlinear thermal conductivities. by considering the temperature singularity on the inclusion surface due to the heat contact resistance. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Determining the mechanical properties at micro- and nanometer length scales using nanoindentation or atomic force microscopy is important to many areas of science and engineering. Here we establish equations for obtaining storage and loss modulus from oscillatory indentations by performing a nonlinear analysis of conical and spherical indentation in elastic and viscoelastic solids. We show that, when the conical indenter is driven by a sinusoidal force, the square of displacement is a sinusoidal function of time, not the displacement itself, which is commonly assumed. Similar conclusions hold for spherical indentations. Well-known difficulties associated with measuring contact area and correcting thermal drift may be circumvented using the newly derived equations. These results may help improve methods of using oscillatory indentation for determining elastic and viscoelastic properties of solids.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Electrowetting (EW) is an effective way to manipulate small volume liquid in micro- and nano-devices, for it can improve its wettability. Since the late 1990s, electrowetting-on-dielectric (EWOD) has been used widely in bio-MEMS, lab-on-a-chip, etc. Polydimethlsiloxane (PDMS) is extensively utilized as base materials in the fabrication of biomedical micro- and nano-devices. The properties of thin PDMS films used as dielectric layer in EW are studied in this paper. The experimental results show that the thin PDMS films exhibit good properties in EWOD. As to PDMS films with different thicknesses, a threshold voltage and a hysteresis were observed in the EIWOD experiments.
Resumo:
The slack-taut state of tether is a particular Averse circumstance, which may influence the normal operation stale of tension leg platform (TLP). The dynamic responses of TLP with slack-taut tether are studied with consideration of several nonlinear factors introduced by large amplitude motions. The time histories of stresses of tethers of a typical TLP in slack-taut state are given. In addition, the sensitivities of slack to stiffness and mass are investigated by varying file stiffness of tether and mass of TLP. It is found that slack is sensitive to the mass of TLP. The critical culled surfaces (over which indicates the slack) for the increase of mass are obtained.
Resumo:
The land subsidence of soft clay is including natural and man-made content, which leads to the research on the mechanism of land subsidence constituted by two different aspects, which are studied by geological engineers and geologist. The main major research is focused on the effects of engineering. The land subsidence engineering of soil mechanics is caused by the consolidation and compression of soft clay, the content of which is including the micro-structural characteristics, the stress - strain constitutive relation, porous law, and consolidation theory. In this paper, it is discussed the nonlinear consolidation and compression theory of soft clay. The main studies and conclusions of this thesis are as follows. (1)The micro-structure and its stability are closely related to the engineering characters of soft clay. The stiffness and force connection status of micro-structure plays a controlling influence to its stability. (2)Under saturated state, clay particles remain in a non-full contact or non-contact status, so it is needed to modify the Terzaghi effective stress principle. With the discharge of pore water, the effective stress is increasing, and part of weakly bound-water begins flow, while the porosity and permeability are became lower. (3)It exist non-linear flow in soft clay, which is caused by the shear flow situation of weakly bounded-water. In this case, permeability coefficient is a nonlinear function of hydraulic gradient. (4)In the initial consolidation stage of soft clay in the initial stage, the porous flow is mainly caused by the excretion of free water. With the decrease of free water content, combined bonded-water start to supply free water. At the later stage of consolidation, the flow of fluid is mainly consisted by weakly bounded-water. The exchange between bonded-water and free water is played a role, which slows down the consolidation process.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.
Resumo:
The phenomena of the 'piling up' and 'sinking-in' of surface profiles in conical indentation in elastic-plastic solids with work hardening are studied using dimensional and finite-element analysis. The degree of sinking in and piling up is shown to depend on the ratio of the initial yield strength Y to Young's modulus E and on the work-hardening exponent n. The widely used procedure proposed by Oliver and Pharr for estimating contact depth is then evaluated systematically. By comparing the contact depth obtained directly from finite-element calculations with that obtained from the initial unloading slope using the Oliver-Pharr procedure, the applicability of the procedure is discussed.