4 resultados para Non-markovian

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the kinetics of protein folding via statistical energy landscape theory. We concentrate on the local-connectivity case, where the configurational changes can only occur among neighboring states, with the folding progress described in terms of an order parameter given by the fraction of native conformations. The non-Markovian diffusion dynamics is analyzed in detail and an expression for the mean first-passage time (MFPT) from non-native unfolded states to native folded state is obtained. It was found that the MFPT has a V-shaped dependence on the temperature. We also find that the MFPT is shortened as one increases the gap between the energy of the native and average non-native folded states relative to the fluctuations of the energy landscape. The second- and higher-order moments are studied to infer the first-passage time distribution. At high temperature, the distribution becomes close to a Poisson distribution, while at low temperatures the distribution becomes a Levy-type distribution with power-law tails, indicating a nonself-averaging intermittent behavior of folding dynamics. We note the likely relevance of this result to single-molecule dynamics experiments, where a power law (Levy) distribution of the relaxation time of the underlined protein energy landscape is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An exact quantum master equation formalism is constructed for the efficient evaluation of quantum non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. A novel truncation scheme is further proposed and compared with other approaches to close the resulting hierarchically coupled equations of motion. The interplay between system-bath interaction strength, non-Markovian property, and required level of hierarchy is also demonstrated with the aid of simple spin-boson systems. (C) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master equation with the well-known time-dependent density functional theory. The key ingredients of this paper include (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e., the device); and (iii) the construction of Kohn-Sham master equations for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOMs) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along with the propagation of the Kohn-Sham master equation and the EOMs of the auxiliary functions.