18 resultados para Non-linear behavior
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.
Resumo:
A procedure for designing the optimal bounded control of strongly non-linear oscillators under combined harmonic and white-noise excitations for minimizing their first-passage failure is proposed. First, a stochastic averaging method for strongly non-linear oscillators under combined harmonic and white-noise excitations using generalized harmonic functions is introduced. Then, the dynamical programming equations and their boundary and final time conditions for the control problems of maximizing reliability and of maximizing mean first-passage time are formulated from the averaged Ito equations by using the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraint. Finally, the conditional reliability function, the conditional probability density and mean of the first-passage time of the optimally controlled system are obtained from solving the backward Kolmogorov equation and Pontryagin equation. An example is given to illustrate the proposed procedure and the results obtained are verified by using those from digital simulation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear theory of an intermediate pressure discharge column in a magnetic field is presented. Motion of the neutral gas is considered. The continuity and momentum transfer equations for charged particles and neutral particles are solved by numerical methods. The main result obtained is that the rotating velocities of ionic gas and neutral gas are approximately equal. Bohm's criterion and potential inversion in the presence of neutral gas motion are also discussed.
Resumo:
In this paper, we first present a system of differential-integral equations for the largedisturbance to the general case that any arbitrarily shaped solid body with a cavity contain-ing viscous liquid rotates uniformly around the principal axis of inertia, and then develop aweakly non-linear stability theory by the Lyapunov direct approach. Applying this theoryto the Columbus problem, we have proved the consistency between the theory and Kelvin'sexperiments.
Resumo:
The non-resonant third-order non-linear optical properties of amorphous Ge20As25Se55 films were studied experimentally by the method of the femtosecond optical heterodyne detection of optical Kerr effect. The real and imaginary parts of complex third-order optical non-linearity could be effectively separated and their values and signs could be also determined, which were 6.6 x 10(-12) and -2.4 x 10(-12) esu, respectively. Amorphous Ge20As25Se55 films showed a very fast response in the range of 200 fs under ultrafast excitation. The ultrafast response and large third-order non-linearity are attributed to the ultrafast distortion of the electron orbitals surrounding the average positions of the nucleus of Ge, As and Se atoms. The high third-order susceptibility and a fast response time of amorphous Ge20As25Se55 films makes it a promising material for application in advanced techniques especially in optical switching. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The real and imaginary parts of third-order susceptibility of amorphous GeSe2 film were measured by the method of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultra fast pulses. The results indicated that the values of real and imaginary parts were 8.8 x 10(-12) esu and -3.0 x 10(-12) esu, respectively. An amorphous GeSe2 film also showed a very fast response within 200 fs. The ultra fast response and large third-order non-linearity are attributed to the ultra fast distortion of the electron orbits surrounding the average positions of the nucleus of Ge and Se atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.
Resumo:
The non-linear optical (NLO) properties of crystalline beta-BaB2O4 (beta-barium borate, BBO) have been investigated from the chemical bond viewpoint. The contributions of each type of chemical bond to the total NLO coefficient have been quantitatively determined. The calculations indicate that the true space group of BBO is R3 rather than R3c.
Resumo:
From the chemical bond viewpoint, second-order non-linear optical (NLO) tenser coefficients of KNbO3 and LiNbO3 crystals have been calculated. By using the bond-valence theory of complex crystals and the modified bond-charge model, we were able to determine contributions of each type of constituent chemical bond to the total second-order NLO susceptibility. The tenser values thus calculated are in good agreement with experimental data. From the comparison of NLO tenser coefficients of these two crystals, we found that the major NLO contributors are KO12 groups and LiO6 octahedra not the distorted NbO6 octahedra. The difference between their NLO properties arises from their different structural characters, and the high coordination number of constituent elements in KNbO3 makes its valence electrons become more delocalised compared with those of LiNbO3. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
A general effective response is proposed for nonlinear composite media, which obey a current field relation of the form J = sigmaE + chi\E\(2) E when an external alternating current (AC) electrical field is applied. For a sinusoidal applied field with finite frequency omega, the effective constitutive relation between the current density and electric field can be defined as,
Resumo:
The paper proposes the identification method of linear and non-linear chromatographic system. The non-linear isotherms and lumped mass transfer coefficients of chromatography separating sorbitol and mannitol are determined. And the theoretical elution curves calculated by non-linear chromatographic model are more accurate than those calculated by linear chromatographic model.
Resumo:
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation.
Resumo:
The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.
Resumo:
The capacity degradation of bucket foundation in liquefied sand layer under cyclic loads such as equivalent dynamic ice-induced loads is studied. A simplified numerical model of liquefied sand layer has been presented based on the dynamic centrifuge experiment results. The ice-induced dynamic loads are modeled as equivalent sine cyclic loads, the liquefaction degree in different position of sand layer and effects of main factors are investigated. Subsequently, the sand resistance is represented by uncoupled, non-linear sand springs which describe the sub-failure behavior of the local sand resistance as well as the peak capacity of bucket foundation under some failure criterion. The capacity of bucket foundation is determined in liquefied sand layer and the rule of capacity degradation is analyzed. The capacity degradation in liquefied sand layer is analyzed comparing with that in non-liquefied sand layer. The results show that the liquefaction degree is 0.9 at the top and is only 0.06 at the bottom of liquefied sand layer. The numerical results are agreement well with the centrifugal experimental results. The value of the degradation of bucket capacity is 12% in numerical simulating whereas it is 17% in centrifugal experiments.