3 resultados para Non-ferrous metals
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to improve the sulfur resistance of noble metal catalysts in the aromatic hydrogenation of diesel fuel, the alloying effect of non-noble metals with Pd was studied. Toluene hydrogenation over Pd and Pd-M bimetallic catalysts (M = Cr, W,La, Mn, Mo, Ag) on a mixed HY-Al2O3 support was investigated in the presence of 3000 ppm sulfur as thiophene in the feedstock. The results showed that the addition of the second metals strongly affected the activity of toluene hydrogenation, which suggests that the sulfur resistibility of Pd-M bimetallic catalysts is much different from single Pd. La, Mn, Mo and Ag decreased the sulfur resistance of the palladium catalysts. For example, the toluene conversion at 553 K was observed to decrease sharply from 39.4 wt.% on Pd to 1.6 wt.% on Pd-Ag, which is by a factor of 25. One of the important findings in this article is that Cr and W increase hydrogenation activity of Pd catalysts. The reactions occurring on these catalysts include hydrogenation, isomerization and hydrocracking, The addition of the second metals has no noticeable effects on the hydrogenation and isomerization selectivity, but it slightly suppresses hydrocracking reactions. The four typical catalysts, Pd-Cr, Pd-W, Pd-Ag and Pd were characterized by infrared (IR) spectroscopy of pyridine and CO. LR spectra of CO revealed the strong interaction between Pd and the second metal as Cr, W and Ag (or their oxide), indicating that the improvement in sulfur resistance originates from electron-deficient Pd with the addition of second metals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemical behavior of a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu or Zn), was investigated systematically and comparably in aqueous solutions by electrochemical and in situ UV-visible-near-IR spectroelectrochemical methods. These compounds exhibit not only successive reduction processes of the addenda atoms (W) in a negative potential range, but some of them also involve redox reactions originating from the substituted transition metals (M) such as the reduction of Fe-III and Cu-II at less negative potentials and the oxidation of Mn-II at a more positive potential. Some interesting results and phenomena, especially of the transition metals, were found for the first time. Moreover, possible reaction mechanisms are proposed based on the experimental results.
Resumo:
Two M(n+)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol systems for the simultaneous determination of the valence states of Cr and Fe using factor analysis were studied. (1) At pH 4.0, Cr(III) and Cr(VI) react with the reagent to form stable complexes and a slight difference in the wavelengths of maximum absorption (lambda(max.)) between the two complexes is observed when the sodium lauryl sulfate, which also acts as a solubilizing and sensitizing agent, is added, viz., 590 nm for Cr(III) and 593 nm for Cr(VI) complexes. (2) In the presence of ethanol, both Fe(II) and Fe(III) form 1:2 complexes with the reagent at pH 2.5-3.5 and the lambda(max.) of the Fe(II) and Fe(III) complexes is at 557 and 592 nm, respectively. In the target transformation factor analysis, the K coefficients calculated from the standard mixtures by classical least-squares analysis and a non-zero intercept added to each wavelength are used as the target vector instead of the pure component standards; this can decrease the analysis errors introduced by the interaction between the two species and by deviations from Beer's law.