39 resultados para Next-to-leading orders
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated.We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard–Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.
Resumo:
By means of a surface plastic deformation method a nanocrystalline (NC) intermetallic compound was in situ synthesized on the surface layer of bulk zirconium (Zr). Hardened steel shots (composition: 1.0C, 1.5Cr, base Fe in wt.%) were used to conduct repetitive and multidirectional peening on the surface layer of Zr. The microstructure evolution of the surface layer was investigated by X-ray diffraction and scanning and transmission electron microscopy observations. The NC intermetallic layer of about 25 gm thick was observed and confirmed by concentration profiles of Zr, Fe and Cr, and was found to consist of the Fe100-xCrx compound with an average grain size of 22 nm. The NC surface layer exhibited an extremely high average hardness of 10.2 GPa. The Zr base immediately next to the compound/Zr interface has a grain size of similar to 250 nm, and a hardness of similar to 3.4 GPa. The Fe100-xCrx layer was found to securely adhere to the Zr base. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated. We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard-Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.
Resumo:
A technique for enhanced generation of selected high harmonics in a gas medium, in a high ionization limit, is proposed in this paper. An aperiodically corrugated hollow-core fiber is employed to modulate the intensity of the fundamental laser pulse along the direction of propagation, resulting in multiple quasi-phase-matched high harmonic emissions at the cutoff region. Simulated annealing (SA) algorithm is applied for optimizing the aperiodic hollow-core fiber. Our simulation shows that the yield of selected harmonics is increased equally by up to 2 orders of magnitude compared with no modulation and this permits flexible control of the quasi-phase-matched emission of selected harmonics by appropriate corrugation. (c) 2007 Optical Society of America.
Resumo:
采用矢量法设计了三硼酸锂晶体上1064 nm、532 nm和355 nm三倍频增透膜,结果表明1064 nm、532 nm和355 nm波长的剩余反射率分别为0.0017%、0.0002%和0.0013%。根据误差分析,薄膜制备时沉积速率精度控制在+5.5%时,1064 nm、532 nm和355 nm波长的剩余反射率分别增加至0.20%、0.84%和1.89%。当材料折射率的变化控制在+3%时,1064 nm处的剩余反射率增大为0.20%,532 nm和355 nm处分别达0.88%和0.24%。与薄膜
Resumo:
采用1/4规整膜系,从电场强度、吸收损耗及散射损耗的分布几个方面,对影响193 nm反射膜性能的因素进行了分析。以分析结果为基础,对低损耗193 nm反射膜的设计进行了探讨。结果表明:在空气侧的外膜层中电场强度较大,随着层数向内过渡,电场强度迅速减小;高折射率材料膜层的吸收损耗明显高于低折射率材料膜层的吸收损耗,而且靠近空气侧最外层的高折射率膜层的吸收损耗最大;按由外层向内层过渡的方向,吸收损耗迅速减小,减小的速度与高低折射率材料折射率的比值相关;表面散射损耗与两种材料的折射率比值成正比,但折射率比值减小后只能通过增加膜层数来获得一定的反射率,而这样又会使表面粗糙度增加,并且引入其它的损耗。因此,选择折射率差值适当大一些的材料对降低散射损耗是有利的。设计了27层膜堆的193 nm反射膜,设计反射率在98%以上。
Resumo:
The specific plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) is a serine proteinase presenting 23% sequence identity with the proteinase domain of tissue type plasminogen activator, and 63% with batroxobin, a fibrinogen clotting enzyme from Bothrops atrox venom that does not activate plasminogen. TSV-PA contains six disulfide bonds and has been successfully overexpressed in Escherichia coli (Zhang, Y., Wisner, A., Xiong, Y. L,, and Bon, C, (1995) J. Biol. Chem. 270, 10246-10255), To identify the functional domains of TSV-PA, we focused on three short peptide fragments of TSV-PA showing important sequence differences with batroxobin and other venom serine proteinases. Molecular modeling shows that these sequences are located in surface loop regions, one of which is next to the catalytic site, When these sequences were replaced in TSV-PA by the equivalent batroxobin residues none generated either fibrinogen-clotting or direct fibrinogenolytic activity, Two of the replacements had little effect in general and are not critical to the specificity of TSV-PA for plasminogen. Nevertheless, the third replacement, produced by the conversion of the sequence DDE 96a-98 to NVI, significantly increased the K-m for some tripeptide chromogenic substrates and resulted in undetectable plasminogen activation, indicating the key role that the sequence plays in substrate recognition by the enzyme.
Resumo:
The paper describes the rapid and label-free detection of the white spot syndrome virus (WSSV) using a surface plasmon resonance (SPR) device based on gold films prepared by electroless plating. The plating condition for obtaining films suitable for SPR measurements was optimized. Gold nanoparticles adsorbed on glass slides were characterized by transmission electron microscopy (TEM). Detection of the WSSV was performed through the binding between WSSV in solution and the anti-WSSV single chain variable fragment (scFv antibody) preimmobilized onto the sensor surface. Morphologies of the as-prepared gold films, gold films modified with self-assembled alkanethiol monolayers, and films covered with antibody were examined using an atomic force microscope (AFM). To demonstrate the viability of the method for real sample analysis, WSSV of different concentrations present in a shrimp hemolymph matrix was determined upon optimizing the surface density of the antibody molecules. The SPR device based on the electroless-plated gold films is capable of detecting concentration of WSSV as low as 2.5 ng/mL in 2% shrimp hemolymph, which is one to two orders of magnitude lower than the level measurable by enzyme-linked immunosorbant assays. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics; studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.
Resumo:
The taxonomy of Aphanizomenon flos-aquae strain NH-5, a producer of cyanotoxins, was re-evaluated by comparison with six other Aphanizomenon strains using morphological characteristics and 16S rRNA gene sequences. Strain NH-5 was concluded to be improperly identified as Aph. flos-aquae based upon (1) lack of bundle formation in the trichomes, (2) location of akinetes next to heterocytes, (3) lower similarities (less than 97.5%) in the 16S rRNA gene sequences relative to Aph. flos-aquae strains, and (4) comparison within a phylogenetic tree constructed from 16S rRNA gene sequences. The Aphanizomenon strains investigated in this study are classified to four morphological groups as described by the classical taxonomy of Komarek & Kovacik (1989). This classification was supported from the phylogenetic results of 16S rRNA gene sequences. This study also discusses the generic boundaries between Aphanizomenon and Anabaena.
Resumo:
The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from the polysaccharides present in N. commune collected in the field. High pH anion exchange chromatography (HPAEC) of weak acid hydrolysates of the culture-grown material demonstrated that, in this case, HPAEC was useful for comparison of the different polymers. The main differences between the polymers from the field group and the culture-grown samples were the presence of substantial amounts of arabinose, 2-O-methylglucose, and glucuronic acid in the latter. Methylation studies also revealed a difference in the branching points on the glucose units between the field and cultured samples, being 1,4,6 for the first and 1,3,6 for the latter. The field acidic fraction gave, on weak acid hydrolysis and separation on BioGel P2 and HPAEC, 12 oligosaccharide fractions that were isolated and studied by different mass spectroscopy techniques. The structures of the oligosaccharides were determined, and two different series that can originate from two repeating pentamers were identified: GlcAl-4/6GlcM1-4Ga11-4Glc1-4Xyl and GlcAl-4/6Glc1-4Ga11-4Glc1-4Xyl. The difference between these oligosaccharides lies in the methyl substituent on carbon 2 of the glucose unit next to the nonreducing glucuronic acid unit. The polysaccharides from field material were shown to have a strong effect on the complement system.