11 resultados para New learning technology
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Laser bending mechanism is remarked, and its essence is the temperature gradient mechanism. The reverse bending and the thickened mechanisms are included in the temperature gradient mechanism because they are only different phenomena based on different thickness of the material. Experimental result shows that there is a kind of un-convention temperature distribution in the limit thickness specimen under laser irradiation. This phenomenon cannot be explained by the classical Fourier Law and is defined as Pan-Fourier effect in order to explain laser bending mechanism further.
Resumo:
报道了一种新型实用的用单根光纤布拉格光栅(FBG)实现温度和应变分离传感的技术。当光纤光栅一部分包层直径变小时,整个光栅可以看成由两个周期相同但直径不同的子光栅连接而成。理沦分析和实验都证实了这两个子光栅具有相同的温度敏感性和不同的应变敏感性.由此实现光纤光栅传感器中温度和应变两参数的分离测量,而且这两个子光栅的中心波长间距可以直接测量应变大小.温度变化不影响所测量的应变值。实验中光栅的一部分包层直径被HF酸腐蚀到82μm.获得了两子光栅应变响应系数分别为0.00201nm/με.0.000858nm/μ
Resumo:
详细描述了用光纤耦合、波长复用的全息光盘仔储光路.指出在全息光盘驱动器即将市场化的今天.由于其光路简单、光学元件较少、性价比高.很有可能成为新的全息光盘驱动器的核心技术之一。由于短波长单模光纤及其双波长光纤分束器件的要求比较高.而用多模光纤进行准单模输出调整.以及用分光棱镜进行光束的分光.同时用对双波长敏感的光致聚合物材料进行存储.其光谱灵敏度均匀.光谱范围互不重叠。实验结果表明.光路结构合理.存储效果良好。
Resumo:
采用有损耗介质和色散介质的二维时域有限差分方法,数值模拟了以光波长514.5 nm的p偏振基模高斯光束为入射光源,激发Kretschmann型表面等离子体共振,并通过探针的局域场增强效应实现纳米光刻的新方法——探针诱导表面等离子体共振耦合纳米光刻.分别就探针与记录层的间距以及探针针尖大小,模拟分析了不同情况下探针的局域场增强效应和记录层表面的相对电场强度振幅分布.结果表明,探针工作在接触模式时,探针的局域场增强效应最明显,记录层表面的相对电场强度振幅的对比度最大;当探针针尖距记录层5 nm时,针尖下方记录层表面的相对电场强度振幅大于光刻临界值的分布宽度与针尖尺寸相近.
Resumo:
A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.
Resumo:
Web GIS作为一门新兴的技术学科 ,依托互联网的环境和 Internet实用技术 ,成为地理信息系统理论研究和技术创新的增长点。随着网络技术和应用市场的不断发展和扩大 ,将促进 GIS新兴信息产业的形成。本文结合工作实践 ,论述了 Web GIS的技术背景与发展 ,以及系统功能等基础理论 ,重点讨论了 Web GIS的体系结构、实现策略和技术方法
Resumo:
PC性能的不断提高及实时操作系统内核的出现,促使了一种基于PC和现场总线的新型控制系统的诞生。由于该系统成本低,占用空间少,在联网、监控等方面有突出优点,并且PC机性能已经非常可靠,所以它可以取代传统的PLC来完成实时控制任务。为了验证系统的可行性,文章系统地介绍了这类新型控制系统的优点和整体软硬件结构,并对其中一个重要的性能指标——响应时间,进行了详细分析,然后通过一个实际系统——自动传输线系统,验证了这一控制系统的可行性。
Resumo:
为了使机器人跟踪给定的期望轨线,提出了一种新的基于机器人运动重复性的学习控制法.在这种方法中机器人通过重复试验得到期望运动,这种控制法的优点:一是对于在期望运动附近非线性机器人动力学的近似表达式的线性时变机械系统产生期望运动的输入力矩可不由估计机器人动力学的物理参数形成;二是可以适当的选择位置、速度和加速度反馈增益矩阵,从而加快误差收敛速度;三是加入了加速度反馈,减少了速度反馈,减少了重复试验的次数.这是因为在每次试验的初始时刻不存在位置和速度误差,但存在加速度误差.另外,这种控制法的有效性通过PUMA562机器人的前三个关节的计算机仿真结果得到验证。
Resumo:
Superfine mineral materials are mainly resulted from the pulverization of natural mineral resources, and are a type of new materials that can replace traditional materials and enjoy the most extensive application and the highest degree of consumption in the present day market. As a result, superfine mineral materials have a very broad and promising prospect in terms of market potential. Superfine pulverization technology is the only way for the in-depth processing of most of the traditional materials, and is also one of the major means for which mineral materials can realize their application. China is rich in natural resources such as heavy calcite, kaolin, wollastonite, etc., which enjoy a very wide market of application in paper making, rubber, plastics, painting, coating, medicine, environment-friendly recycle paper and fine chemical industries, for example. However, because the processing of these resources is generally at the low level, economic benefit and scale for the processing of these resources have not been realized to their full potential even up to now. Big difference in product indices and superfine processing equipment and technologies between China and advanced western countries still exists. Based on resource assessment and market potential analysis, an in-depth study was carried out in this paper about the superfine pulverization technology and superfine pulverized mineral materials from the point of mineralogical features, determination of processing technologies, analytical methods and applications, by utilizing a variety of modern analytical methods in mineralogy, superfine pulverization technology, macromolecular chemistry, material science and physical chemistry together with computer technology and so on. The focus was placed on the innovative study about the in-depth processing technology and the processing apparatus for kaolin and heavy calcite as well as the application of superfine products. The main contents and the major achievements of this study are listed as follows: 1. Superfine pulverization processing of mineral materials shall be integrated with the study of their crystal structures and chemical composition. And special attention shall be put on the post-processing technologies, rather than on the indices for particle size, of these materials, based on their fields of application. Both technical feasibility and economic feasibility shall be taken into account for the study about superfine pulverization technologies, since these two kinds of feasibilities serve as the premise for the industrialized application of superfine pulverized mineral materials. Based on this principle, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in this study, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in this study. Heavy calcite and kaolin are two kinds of superfine mineral materials that enjoy the highest consumption in the industry. Heavy calcite is mainly applied in paper making, coating and plastics industries, the hard kaolin in northern China is mainly used in macromolecular materials and chemical industries, while the soft kaolin in southern China is mainly used for paper making. On the other hand, superfine pulverized heavy calcite and kaolin can both be used as the functional additives to cement, a kind of material that enjoys the biggest consumption in the world. A variety of analytical methods and instruments such as transmission and scanning electron microscopy, X-ray diffraction analysis, infrared analysis, laser particle size analysis and so on were applied for the elucidation of the properties and the mechanisms for the functions of superfine mineral materials as used in plastics and high-performance cement. Detection of superfine mineral materials is closely related to the post-processing and application of these materials. Traditional detection and analytical methods for superfine mineral materials include optical microscopy, infrared spectral analysis and a series of microbeam techniques such as transmission and scanning electron microscopy, X-ray diffraction analysis, and so on. In addition to these traditional methods, super-weak luminescent photon detection technology of high precision, high sensitivity and high signal to noise ratio was also utilized by the author for the first time in the study of superfine mineral materials, in an attempt to explore a completely new method and means for the study of the characterization of superfine materials. The experimental results are really exciting! The innovation of this study is represented in the following aspects: 1. In this study, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in an innovative way, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in the industrialized production process*. Moreover, a new modification technology and related directions for producing the chemicals were invented, and the modification technology was even awarded a patent. 2. The detection technology of super-weak luminescent photon of high precision, high sensitivity and high signal to noise ratio was utilized for the first time in this study to explore the superfine mineral materials, and the experimental results can be compared with those acquired with scanning electron microscopy and has demonstrated its unique advantages. It can be expected that further study may possibly help to result in a completely new method and means for the characterization of superfine materials. 3. During the heating of kaolinite and its decomposition into pianlinite, the diffraction peaks disappear gradually. First comes the disappearance of the reflection of the basal plane (001), and then comes the slow disappearance of the (hkl) diffraction peaks. And this was first discovered during the experiments by the author, and it has never before reported by other scholars. 4. The first discovery of the functions that superfine mineral materials can be used as dispersants in plastics, and the first discovery of the comprehensive functions that superfine mineral materials can also be used as activators, water-reducing agents and aggregates in high-performance cement were made in this study, together with a detailed discussion. This study was jointly supported by two key grants from Guangdong Province for Scientific and Technological Research in the 10th Five-year Plan Period (1,200,000 yuan for Preparation technology, apparatus and post-processing research by using sub-micron superfine pulverization machinery method, and 300,000 yuan for Method and instruments for biological photon technology in the characterization of nanometer materials), and two grants from Guangdong Province for 100 projects for scientific and technological innovation (700,000 yuan for Pilot experimentation of superfine and modified heavy calcite used in paper-making, rubber and plastics industry, and 400,000 yuan for Study of superfine, modified wollastonite of large length-to-diameter ratio).