16 resultados para Neo-avantgard

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

相对于酵母拮抗菌的使用来说,人们对其作用机理了解得还不是很清楚。而了解拮抗菌的抑菌机理却是增强拮抗菌的生防效果以及进行拮抗菌筛选标准的重要前提。本文主要研究了酵母拮抗菌Pichia membranefaciens、Cryptococcus albidus以及Crytococcus laurentii对水果采后软腐病、褐腐病以及青霉病的防治效果,拮抗菌与病原菌之间的相互作用,并对酵母拮抗菌与外源物质配合使用,以及通过遗传改良途径来提高酵母拮抗菌生防能力等进行了初步研究。实验结果如下: 1、酵母拮抗菌P. membranefaciens、C. albidus以及C. laurentii能在果实伤口大量繁殖。采用扫描电镜技术,观察发现在桃果实伤口处P. membranefaciens能紧密地吸附在软腐病菌Rhizopous stolonfier的菌丝体上;C. laurentii与青霉病菌Penicillium expansum在苹果果实伤口处也存在着直接的拮抗作用;但P. membranefaciens和C. albidus对P. expansum的直接作用不明显。 2、酵母拮抗菌P. membranefaciens能够有效地抑制甜樱桃果实在常温和低温贮藏条件下褐腐病的发生。在常温贮藏条件下,P. membranefaciens和褐腐病菌Monilinia fracticola 处理都能够提高果实β-1,3-葡聚糖酶、POD、以及PAL酶的活性,但在低温贮藏条件下,拮抗菌和病原菌处理对甜樱桃果实β-1,3-葡聚糖酶、POD酶活性的升高有促进作用,对PAL和PPO酶活性的诱导作用不明显。 3、梨果实采后经过水杨酸,CaCl2,UV辐射和草酸等各种激发子处理以后,再接种病原菌Alternaria alternata,可以显著降低梨果实的发病率。其中,水杨酸处理的果实发病率最低。不同的激发子均可以诱导梨果实β-1,3-葡聚糖酶、POD、PAL和PPO酶活性的升高,但对果实乙烯含量的影响不明显。 4、氨基糖甙类抗菌素G418能够抑制P. membranefaciens的生长,其最低抑制浓度为100g ml-1。将G418抗性基因Neor插入到酵母-大肠杆菌穿梭表达载体pFL61中,构建PGK启动子驱动的表达载体pFL61-neo,利用醋酸锂转化法转化P. membranefaciens。酵母转化子在非选择性培养条件下连续生长50代后,仍有67.87%的细胞保留该质粒。这表明穿梭表达载体pFL61-neo能稳定地存在于P. membranefaciens中,并且该酵母细胞能有效地识别PGK启动子和终止子指导Neor的表达。 5、酵母拮抗菌C. laurentii和Rhodotorula glutinis与2%的碳酸氢钠混合使用,对冬枣果实青霉病的防治效果明显比单独使用拮抗菌或化学物质的防病效果好。其中,107CFU ml-1的拮抗菌与238 mmol l-1的碳酸氢钠配合使用可以达到单独使用108CFU ml-1拮抗菌的防病效果。另外,钼酸铵作为一种添加剂也能提高R. glutinis对梨果实青霉病和黑霉病的防治效果,但将钼酸铵与Trichosporon sp.配合使用的防病效果不明显。碳酸氢钠和钼酸铵在果实伤口对酵母拮抗菌的生长都有一定的抑制作用。 6、酵母拮抗菌P. membranefaciens在不同碳源、氮源中生长情况表明:在几种氮源中,大豆蛋白胨、酵母提取物、牛肉浸膏对P. membranefaciens的生长有显著的促进作用,其中,大豆蛋白胨的效果最好。在检测以葡萄糖、果糖和麦芽糖作为碳源的生长实验中,发现这几种碳源都能够被拮抗菌很好的利用,其中葡萄糖的利用率最好。小球藻生长因子(CGF)能够明显地促进了P. membranefaciens的生长。但是,CGF的浓度从0.5%增加到1%并没有促进酵母菌细胞数量的增加。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光合作用是地球上最重要的化学反应,它主要发生在叶绿体的类囊体膜上。光能是整个光合作用反应的驱动力,因此光能的捕获和传递过程将会直接影响整个生物体的光合作用表现。在高等植物中,光系统II(PSII)的大量捕光色素蛋白复合体(LHCIIb)作为最主要的、含量最多的光能捕获和传递器官,在光合作用过程中发挥着极其重要的作用。经过数十年的研究,认为LHCIIb主要的功能有以下四个方面:捕获和传递光能、光保护和过剩能量耗散、调节光能在两个光系统中分配和维持类囊体膜的结构。同时对其空间结构也在2.72Å的水平上进行了解析,发现每个单体含有14个叶绿素分子(Chl),其中8个叶绿素 a(Chl a)和6个叶绿素 b(Chl b),2个黄体素(Lut),一个新黄质(Neo)和一个紫黄质(Vio),3个跨膜α-螺旋和2个双亲α-螺旋。尽管目前对其空间结构和基本功能有了初步的了解,但以往研究均是对LHCIIb的三个色素蛋白复合体(Lhcb1、Lhcb2和Lhcb3)的混合研究,而关于Lhcb1、Lhcb2和Lhcb3各自的氨基酸组成、色素组成、各种光谱性质和稳定性研究还处于起步阶段。对Lhcb1、Lhcb2和Lhcb3各自的特性研究可以使我们更加深刻地理解LHCIIb的结构和功能。 本论文首先利用RT-PCR技术从豌豆(Pisum sativum L.)中提取了编码大量捕光色素蛋白复合体的三个脱辅基蛋白基因,分析了它们编码蛋白的氨基酸序列,并系统地研究了三个蛋白与其他物种中的三个蛋白之间的亲缘关系;然后在体外进行了成功的表达和与色素重组,进而对重组LHCIIb的色素组成及光谱特征进行了系统地对比和研究。实验结果表明,Lhcb1和Lhcb3的保守性高于Lhcb2,且Lhcb3最高,Lhcb1和Lhcb2的蛋白序列相似程度高于Lhcb3;Lhcb1同质三聚体的Neo含量和α-螺旋含量高于Lhcb1单体,Lhcb2单体和Lhcb3单体的α-螺旋含量高于Lhcb1单体;与Lhcb1单体和Lhcb2单体相比,Lhcb1同质三聚体和Lhcb3单体的荧光发射光谱明显红移,与核心复合物的光谱特征更加接近,这一区别可能更加有利于能量向核心传递;吸收光谱中表明,Lhcb1和Lhcb2存在两个Chl a吸收峰,根据分析超快吸收得到的模型(Amerongen & Grondelle,2001),这两个吸收峰可能代表Chl a的两个吸收中心。 在对LHCIIb各种基本特性研究的基础之上,本论文使用三氟乙酸(TFA)、离液剂尿素、离子性去污剂SDS、非离子型去污剂Triton X-100对Lhcb1单体进行了处理,使用不同温度对Lhcb1单体和同质三聚体、Lhcb2单体和Lhcb3单体进行处理。研究了它们在不同条件下的稳定性,主要结果如下: 1) 低浓度的尿素不能使Lhcb1变性,但可以影响色素之间的能量传递效率和相互作用。尽管SDS可以使Lhcb1解体,但解体后的蛋白仍旧保留了部分α-螺旋结构。TFA和非离子型去污剂Triton X-100可以使Lhcb1完全解体,并且可以完全破坏蛋白α-螺旋结构,TFA主要是通过影响色素结构和增加蛋白内部的分子间排斥力来破坏Lhcb1,而Triton X-100主要是通过破坏疏水作用力来破坏Lhcb1。高温可以使LHCIIb解体,但不能使蛋白二级结构完全消失。 2) 尿素、温度和Triton X-100均不引起色素本身的破坏,SDS和三氟乙酸使氢置换叶绿素卟啉环所螯合的镁离子,产生去镁叶绿素,造成色素本身结构的严重破坏。 3) 随着温度的升高,色素蛋白复合体的结构和功能会遭到破坏。在Lhcb1和Lhcb2中首先被破坏的是长波长吸收的Chl a。 4) .就功能而言,Lhcb1同质三聚体最为稳定,其次为:Lhcb1单体 > Lhcb3单体 > Lhcb2单体;.就结构而言,Lhcb1单体和Lhcb1同质三聚体相似,稍微较Lhcb2和Lhcb3稳定。 5) 不同处理方式均发现色素蛋白复合体的变性过程依次为:以Chl a为主的相互作用消失,其后依次为以Chl b为主的相互作用消失,以类胡萝卜素为主的相互作用,最后消失的是蛋白的二级结构。在结构受到破坏的同时,能量传递最先受到影响。 6) 解体过程并不是折叠过程的逆过程。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene targeting technique is a powerful tool for analyzing functions of cloned genes and for generating transgenic animals with site-directed integration of foreign genes. In order to develop this technique in fish, positive-negative selection (PNS) and homologous recombination vectors were constructed, and their expression was examined in fish cells. A vector (pNK) for PNS consists of the neomycin resistance gene (neo) as a positive selectable marker gene and the herpes simplex virus (HSV) thymidine kinase (tk) gene as a negative selectable marker gene. Positive selection with geneticin (G418) of epithelioma papulosum of carp (EPC) cells transfected with linearized pNK vector yielded 350 colonies, while double selection of transfected EPC cells with G418 and gancyclovir (Gc) resulted in nearly complete cell death, demonstrating that the PNS procedure is effective in fish cells. Homologous recombination vectors consist of the Xiphophorus melanoma receptor kinase (X mrk(Y)) gene as homologous sequence in addition to the neo and tk genes. Conditions for homologous recombination vector transfection and drug selection were established. After verification of the feasibility of expression of homologous recombination vectors in EPC cells, the first gene targeting experiments were attempted in the Xiphophorus melanoma cell line, PSM. Positive-negative selection of the targeting vector-transfectants led to a low enrichment in this particular cell line. The reasons for the low enrichment in PSM cells were discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

进化生物学得益于近代分子生物学和当代基因组学的发展,已经脱 离了自达尔文时代起博物学式的观察和思辨性的研究状态。很多古老而又 经典的问题,因为在一些年轻的进化系统中的研究,绽放出其背后深刻的 机制。在本工作中,我们通过在模式物种果蝇和珍稀动物黑麂中的研究, 揭示了有关遗传的基本单位-- 基因是如何起源和消亡的,以及这些重要过 程背后的规律。 决定人类雄性的Y 染色体起源于一亿六千万年前X 染色体的同源 染色体。但现今Y 染色体上的基因数目仅仅是X 染色体的百分之一左 右。如此巨大的数目差异,是由于Y 染色体和X 染色体之间重组抑制以 后,大量的Y 染色体基因发生退化消亡所致。 由于哺乳动物的Y 染色体 大都非常古老,Y 退化的过程和机制一直以来无法得以深入研究。 在本工 作的前半部分,我们首次在中国特有的珍稀鹿科动物黑麂中报道鉴定了一 对行为和模式类似人类性染色体的常染色体。这对“新性染色体”(neosex) 仅仅起源于50 万年以内,由于雄性特异的染色体倒位,致使数以千计 的基因像Y 染色体连锁的基因那样,无法与其等位基因重组。对23 个新 Y 染色(neo-Y)体连锁的基因25kb 的蛋白编码区和它们35kb 的非编码区的 序列分析发现,与其他可重组区域相比,这些基因的遗传多态性显著降 低,并积累了改变氨基酸的有害突变。我们还首次用体内表达试验证明Y 染色体的基因在其顺式调控区域也发生了退化。这些积累在启动子或者非 翻译区域(UTR)的有害突变,将扰乱Y 染色体上基因的正常表达,并进一 步促进退化过程和剂量补偿效应以单个基因(gene-by-gene)的模式进化。 本论文的另外一部分工作主要研究了果蝇中新基因起源的总体模式 问题。对遗传新元件如何起源的兴趣,最早可以追溯到达尔文。近年来通 过对“年轻基因”的案例研究,我们已经知道通过基因重复,逆转座,水 平迁移和从头起源等机制可以产生新基因。但这些机制在全基因组水平对 新基因起源的贡献各自如何,以及以非编码区从头起源合成一个新的基因 是否普遍等重要问题一直未得到解答。我们利用比较基因组的手段,在6个果蝇全基因组中,通过12017 个黑腹果蝇基因序列,鉴定刻画了超过 300 个起源于不同时间点的新基因。我们对这些新基因的序列,结构和表 达模式的分析发现,串联重复在产生年轻的新基因过程中占了主导地位 (超过80%)。但是最后固定在群体内,有功能的新基因主要(44.1%)是散在 重复的形式。我们惊奇地发现非编码区从头起源的基因在新基因的起源过 程中也扮演了重要角色,产生了超过10%的有功能的新基因,并且大部分 都进化出了睾丸特异的表达模式。有大约30%的新基因通过招募其他基因 的编码区或者重复元件,形成了新的嵌合结构,暗示它们可能获得了新的 功能。最后,我们估计在果蝇中,每百万年将产生5 至11 个有功能的新 基因。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. 反刍动物核型演化研究 反刍亚目是偶蹄目中最大的亚目,包括鼷鹿下目(鼷鹿科)和有角下目(叉角 羚羊科、长颈鹿科、麝科、牛科和鹿科)。许多物种具有巨大的经济价值(如: 牛,羊,鹿和麝,等)和重要的科学研究价值(如麂类动物)。对反刍动物进行 细胞遗传学研究,不仅可以为动物遗传育种和驯化提供重要的理论依据和合理 建议,也可以为生物演化等基础科学研究提供新的见解和理论阐释。种间染色 体涂色可以快速、准确地检测物种间全基因组水平上的同源性,已经成为比较 细胞遗传学研究的首选技术。通过构建物种间的染色体同源图谱,分析保守的 同源染色体片段在不同物种、不同类群核型中的分布和排列方式,可以推导各 类群可能的祖先核型并重建伴随物种形成所发生的基因组结构变化(包括染色 体重排的类型、速率和核型演化的趋势等),为系统发育关系研究提供重要的细 胞遗传学证据。 本研究首次通过种间染色体涂色技术,利用小麂染色体特异探针,大规模 建立了小麂与牛科、鹿科及长颈鹿科代表物种间的染色体同源关系,阐明了其 核型演化中所发生的染色体重排,并以染色体重排为特征,构建了反刍动物各 类群的核型系统发生树。结果表明:1) 有角下目动物的共同祖先核型为2n=58, 牛科2n=60 的祖先核型和鹿科2n=70 的祖先核型都由共同祖先核型经过染色体 分离演化而来;2)与鹿科动物的核型相比,麝科动物与牛科动物的核型比较保 守,更接近共同祖先的核型,二者共有更多的核型特征;3)在有角下目的绝大 多数类群中,罗伯逊易位是导致核型多样化的主导染色体重排方式;鹿科的麂 亚科是个例外,染色体间不断地串联融合使其核型发生了迅速而极端的变化, 导致现生各种极大的核型差异;4)长颈鹿的核型演化较为复杂,除了广泛的罗 伯逊易位外,还涉及到其它类型的染色体重排,如,着丝粒位置变化、串联融 合及染色体内部倒位。现在,黄牛的基因组序列已拼接完毕,鹿、羊的基因组 测序正在进行,本论文中构建的反刍动物间的染色体同源图谱有助于将已有的基因组序列信息向其它反刍动物转移。 2. 麂属动物染色体演化研究 鹿科的麂属动物以快速的物种辐射、迅速而极端的核型演化和不断的新种 发现成为染色体重排与物种形成研究的理想模型。已有的细胞遗传学研究证明 麂属动物的祖先核型为2n=70,染色体间的串联融合是导致其核型迅速演化, 染色体数目急剧降低的主要原因。但是,关于麂属动物核型演化,还有很多问 题没有解决,如,黑麂、贡山麂、费氏麂核型演化中串联融合的类型没有确定, 导致串联融合的分子机制依然不清楚。 本研究利用比较BAC 定位技术首次构建小麂-黑麂、小麂-贡山麂、小麂 -费氏麂、小麂-毛冠鹿染色体间的比较BAC 图谱,研究结果丰富和发展了“串 联融合假说”的内容,对麂属动物的核型演化提出了新的阐释:1)在毛冠鹿、 黑麂、贡山麂和费氏麂的核型演化中所发生的串联融合均为着丝粒-端粒型融 合;2)黑麂1p+4 染色体的演化大体经历了三个步骤,主要涉及染色体易位和 臂间倒位;1p+4 的存在使雄性黑麂具有独特的X1X2Y1Y2Y3 性染色体系统, 1p+4 可以看作新的Y染色体(neo-Y),将是哺乳动物性染色体起源研究的理想模 型; 3)黑麂、贡山麂和费氏麂各自有独特而稳定的基因组结构和核型特征, 支持它们各自为独立的种。此外,实验中筛选出的70 个麂类着丝粒特异的或 C5 样的重复序列克隆将有助于研究麂类基因组中重复序列的类型、组成、结构、 演化及导致串联融合频繁发生的分子机制.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素,以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。RNAi是近年来新发展的一项反向遗传学技术,是一种研究基因功能的有力工具。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。然而在斑马鱼中运用RNAi技术进行基因功能研究是一个相对较新的领域,研究资料较少,并且目前进行的斑马鱼RNAi实验中,siRNA大都是通过化学方法或体外转录合成的。体外合成的siRNA在进入体内后会被降解而无法达到持久阻抑基因表达的目的。因此本研究旨在探讨VEGF特异性siRNA表达载体对斑马鱼VEGF基因的沉默作用,通过分析表型及相关细胞因子的变化,阐明VEGF对斑马鱼胚胎血管生成的影响及作用机制。 研究通过计算机辅助设计软件,针对斑马鱼VEGF mRNA不同位点设计合成了4段含siRNA特异序列的DNA单链,经退火,克隆入pSilencer 4.1-CMV neo载体CMV启动子下游,构建了重组质粒pS1-VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。 通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48 h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,针对不同位点的表达载体对VEGF基因表达的抑制效率有显著差异。它们对VEGF mRNA的抑制率分别为80.5%,42.8%,12.5%,40.7%。通过筛选我们得到了一条具有高效抑制作用的载体pS1-VEGF,该载体的相应序列靶向斑马鱼两个主要异构体VEGF165和VEGF121的共有外显子序列。 形态学检测结果显示,注射了pS1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状。定量碱性磷酸酶染色显示,注射pS1-VEGF能够抑制斑马鱼胚胎新生血管的形成,当注射剂量为0.4 ng时,血管生成的抑制率为31.8%。NBT/BCIP血管染色显示,注射该载体后72 h,50%的斑马鱼肠下静脉、节间血管以及其它血管的发育受到不同程度的抑制。随着注射剂量的加大,血管发育受抑制的情况也随之加重,当注射剂量为1 ng时,只有心脏、头部及卵黄有血液循环。对干扰效果的特异性进行了研究,结果表明pS1-VEGF对斑马鱼内源基因胸苷酸合成酶(thymidylate synthase, TS)基因的表达没有明显的抑制作用。针对TS基因的shRNA表达载体及与斑马鱼没有同源性的对照载体对VEGF基因表达也没有明显的抑制作用。浓度梯度实验表明在0-1.2 ng的范围内干扰效果具有剂量依赖性。 以胚胎整体原位杂交的方法检测质粒对VEGF基因受体NRP1基因表达的影响,发现VEGF特异性shRNA表达载体能够引起NRP1基因表达的降低,说明斑马鱼中VEGF所介导的血管生成作用至少在部分上是依赖于NRP通路所调节的。 本研究工作为进一步研究斑马鱼基因功能、VEGF调控网络提供了一个快速、有效的手段,为阐明斑马鱼的血管生成机制提供了新的资料,为采用RNAi技术,以VEGF为靶点,以斑马鱼为模型对肿瘤进行基因治疗研究奠定了基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiamusi Massif is an important tectonic unit in Northeast China. It’s significant for understanding the evolution of Paleo-Asian Ocean and reconstruction of the tectonic framework of Northeast China. Mudanjiang area is located in the southern margin of Jiamusi Massif and is the key to understand the evolution of Jiamusi Massif. However, the detailed geological research for Mudanjiang area has long been deficient in many important problems, such as the tectonic components of the Mudanjiang collision zone (MCZ), the age of collisional complexes and the scenario of tectonic evolution. Based on the lithology, geochemistry and the SHRIMP zircon U-Pb geochronology in Mudanjiang area, our new data and results come to some constraints for the tectonic reconstruction of MCZ as follows: 1) It is identified that the former suggestion, which the so-called “Heilongjiang Group” in Mudanjiang area is the vestige of oceanic crust, is correct. The oceanic relics represent the Neo-Proterozoic-Early Paleozoic oceanic basins based on the SHRIMP zircon U-Pb geochronology. 2) One sheet of gabbroic complex with oceanic island-type geochemical signature was discovered by this work in Mudanjiang area. 3) It is verified that the Proterozoic concordant U-Pb ages of the migmatites developed along the southern margin of Jiamusi massif, which represent the events of magmatic intrusion, as the direct evidence for the existence of the Proterozoic crystalline basements of the Jiamusi Massif. Based on geochronology, we suggest that the migmatization and coeval S-type granite magmatism of the southern margin of Jiamusi Massif took place about 490Ma. 4) The island arc complex has been found in the Heilongjiang Group, and the oceanic relics was found distributing on both sides, as provided important constraint for the tectonic reconstruction of the MCZ. 5) ~440Ma metamorphic event and coeval post-collisional granite magmatism have been firmly identified in the MCZ and its southern neighboring area. Together with previous data obtained by other researchers, our conclusions on the reconstruction of the tectonic architecture and evolution of the MCZ as follows: 1) The orogenic assemblages developed in the Mudanjiang collisional zone are featured by a sequence of ancient active continental margins and ensuing orogenic processing. The Mashan Group is the reworking basement of Jiamusi Massif, whereas the Heilongjiang Group represents arc and oceanic complexes characterized by imbricate deep-seated sliced and slivering sheets due to multi-phases of thrusting and nappe stacking. 2) The northern sub-belt of MCZ is probably the arc-continent collisional boundary related to the closure of main oceanic basin. The collisional age can be constrained by the events of syn-orogenic migmatization of migmatite, coeval S-type granite magmatism and the related granulite-facies metamorphism. Therefore, we suggested the collisional age of northern sub-belt is probably Cambrian-Early Ordovician. The extensive granulite-facies metamorphism of the Mashan Group in Jiamusi Massif, as affirmed by former works, was probably related with the collisional event. 3) The southern sub-belt of the MCZ was possibly related with the closure of back-arc basin. We presumed that the collisional age of southern sub-belt is about Ordovician-Early Silurian according to the ~440Ma extensive metamorphism and the occurrence of coeval post-collisional granite magmatism. 4) The extant structural architecture of the MCZ is related to the multi-phases of intra-continental superimposition, which is characterized by the Mesozoic nappe structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Huade Group, consisting of low-grade and un-metamorphosed sedimentary rocks with no volcanic interlayer, is located at the northern margin of the North China craton and adjoining the south part of the Central Asian Orogenic Belt. It is east to the Paleo- to Meso-Proterozoic Bayan Obo and Zhaertai-Langshan rifts and northwest to the Paleo- to Neo-proterozoic Yanshan aulacogen, in which the typical Changcheng, Jixian and Qingbaikou systems are developed. The Huade Group are mainly composed of pebbly sandstones, sandstones, greywackes,shales,calc-silicate rocks and limestones, partly undergoing low-grade metamorphism and being changed to meta-sandstones, schists, phyllites, slates and crystalline limestones or marbles. The stratigraphic sequences show several cycles of deposition. Each of them developed coarse clastic rocks – interbedded fine clastic rocks and pelites from bottom upward or from coarse clastic rocks to interbedded fine clastic rocks and pelites to carbonate rocks. The Tumen Group outcrop sporadically around or west to the Tanlu faults in western Shandong. They are mainly composed of pebbly sandstones, sandstones, shales and limestones. This thesis deals with the characteristics of petrology, geochemistry and sedimentary of the Huade Group and the Tumen Group, and discusses the LA-ICP-MS and SIMS U-Pb ages, Hf isotope and trace element composition of the detrital zircons from 5 meta-sandstone samples of the Huade Group and 3 sandstone samples of the Tumen Group. The age populations of the detrital zircons from the Huade Group are mainly ~2.5 Ga and ~1.85 Ga, and there are also minor peaks at ~2.0 Ga, ~1.92 Ga and ~1.73 Ga. Most of the detrital zircon grains of 2.47-2.57 Ga and a few of 1.63-2.03 Ga have Hf crust model ages of 2.7-3.0 Ga, and most of the detrital zircon grains of 1.63-2.03 Ga have Hf crust model ages of 2.35-2.7 Ga, with a peak at 2.54 Ga. The main age peaks of the detrital zircons from the Tumen Group are ~2.5 Ga、~1.85 Ga, 1.57 Ga, 1.5 Ga, 1.33 Ga and 1.2 Ga. Different samples from the Tumen Group have distinct Hf isotopic characteristics. Detrital zircon grains of ~2.52 Ga from one sandstone sample have 2.7-3.2 Ga Hf crust model ages, whereas zircon grains of 1.73-2.02 Ga and 2.31-2.68 Ga from another sample have Hf crust model ages of 2.95-3.55 Ga. Detrital zircon grains of Mesoproterozoic ages have Paleoproterozoic (1.7-2.25 Ga) crust model ages. Through detailed analyses of the detrital zircons from the Huade and Tumen Group and comparison with those from the sedimentary rocks of similar sedimentary ages, the thesis mainly reaches the following conclusions: 1. The youngest age peaks of the detrital zircons of 1.73 Ga constrains the sedimentary time of the Huade Group from late Paleoproterozoic to Mesoproterozoic. 2. The age peaks of detrital zircons of the Huade Group correspond to the significant Precambrian tectonic-thermal events of the North China craton. The basement of the North China craton is the main provenance of the Huade Group, of which the intermediate to high grade metamorphic sedimentary rocks are dominant and provide mainly 1.85-1.92 Ga sediments. 3. The Huade basin belongs to the North China craton and it is suggested that the northern boundary of the North China craton should be north to the Huade basin. 4. The stratigraphic characteristics indicate the Huade Group formed in a stable shallow-hypabyssal sedimentary basin. The rock association and sedimentary time of the Huade Group are similar to those of the Banyan Obo Group and the Zhaertai Group, and they commonly constitute late Paleoproterozoic to Mesoproterozoic continental margin basins along the northern margin of the North China craton. 5. The continental margin basins would have initiated coeval with the Yanshan and Xiong’er aulacogens. 6. The ages of the detrital zircons from the Tumen Group and the Penglai Group at Shandong peninsula and the Yushulazi Group at south Liaoning are similar, so their sedimentary time is suggested to be Neoproterozoic,coeval with the Qingbaikou system. The detrital zircon ages of 1.0-1.2 Ga from the Tumen Group, the Penglai Group and the Yushulazi Group indicate that there have being 1.0-1.2 Ga magmatic activities at the eastern margin of the North China craton. 7. The U-Pb age populations of the detrital zircons from the late Paleoproterozoic to Neoproterozoic sedimentary rocks suggest that the main Precambrian tectonic-thermal events of the North China craton happened at ~2.5 Ga and ~1.85 Ga. But the events at 2.7 Ga and 1.2 Ga are also of great significance. Hf isotope characteristics indicate that the significant crust growth periods of the North China craton are 2.7-3.0 Ga and ~2.5 Ga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Qilian Orogenic Belts had undergone very complicated evolutional histories and play an important role in understanding the tectonic evolutions of old terrains in northwestern China, in which granitiods formed during Proterozoic-early Mesozoic are widely outcropped. Detailed studies of these granitiods can shed some light on the tectonic evolution of this region. In this thesis, we have conducted geochronological and geochemical studies on eight selected granitic plutons to unravel their emplacement ages and petrogenesis. Furthermore, their tectonic implications were also discussed based on these results. In Neo-Proterozoic, our results suggest that two stages of magmatic activities were taken place in Central Qilian Block, GroupⅠ(750-790Ma) and Group Ⅱ(845- 930Ma). In Neo-Paleozoic, most granitic plutons were emplaced from Ordovician to Devonian, whereas granitiods with Triassic ages have also been discovered in South Qilian Belt. Inherited zircons with old ages of 1.7Ga, 2.1Ga and 2.7Ga have also been obtained in our study. Geochemical studies suggest that the Proterzoic granites were produced under high pressures and low temperatures from metamorphosed protolith rocks with compostions from basic to intermediate. This implies that some hot sources were underplated beneath lithosophere via mantle-derived magmatism. In combination with regional geological data, we propose that the Cental Qilian block was an old arc terrene during Precambrian, and two stage granitoids were formed under a back-arc extensional setting. Granitic rocks emplaced in early Paleozoic belong to strong peraluminous S-type granites, which were derived from metagreywacke having strong relationships with collisional process. Together with previous data, our results indicate that granitoids in Qilian Orogenic Belt formed during early Paleozoic have different petrogenesis and emplaced ages, which reflect that Qilian Orogenic Belt had underwent complicated multi-stage subduction-collusional processes in early Paleozoic. On the other hand, granitic rocks in South Qilian Belt with Triassic ages were formed by subduction of East Kulun during early Paleozoic-Late Mesozoic, which represent another orogenic episode in the northern margin of Tibetan Plateau.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Mesozoic-Cenozoic volcanic rocks are well exposed in Lhasa Terrane, southern Tibet. This research attempts to apply 40Ar/39Ar geochronology, major, trace element and Sr-Nd-O isotopic geochemistry data to constrain the spatio-temporal variations, the composition of source, geodynamic setting. The results indicate that Lhasa Terrane mainly went through three tectonic-magmatic cycle: (1) Phase of Oceanic subduction (140-80Ma). Along with the subducting beneath the Eurasian Plate of Neo-Tethys slab, the oceanic sediment and/or the subducting slab released fluids/melts to metasomatize the subcontinental lithospheric mantle, and induced the mantle wedge partially melt and produced the calc-alkaline continental arc volcanic rocks; (2) Phase of continental-continental collision. Following the subducting of the Neo-Tethys slab, the Indian Plate collided with the Eurasian Plate dragged by the dense Neo-Tethys oceanic lithosphere. The oceanic lithosphere detached from continental lithosphere during roll-back and break-off and the asthenosphere upwelled. The resulting conducted thermal perturbation leads to the melting of the overriding mantle lithosphere and produced the syn-collisional magmatism: the Linzizong Formation and dykes; (3) Following by the detachment of the Tethys oceanic lithosphere, the Indian Lithosphere subducted northward by the drive from the expanding of Indian Ocean. The dense Indian continental lithospheric mantle (±the thickened lower crust) break off, disturb the asthenosphere, and lead to the melting of the overriding mantle lithosphere, which has been metasomatized by the melts/fluids from the subducting oceanic/continental lithosphere and the asthenosphere, and produced the rift-related ultrapotassic rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different conclusions from previous work are made from the geochemical study for the early Paleozoic volcanic rocks hosting massive sulfide deposits in the north Qilian Orogen. The main points are: (1)The geochemical characteristics of the basalts and rhyolites from the Baiyin deposit are not consistent with that of the volcanic rocks in the continental rift setting, but show the relationship with subduction. The basalts and rhyolites from the Baiyin deposit are probably individual tectonic slice piled by subduction, and there is no bimodal volcanic rock suite occurred in the Baiyin deposit. Zircon U-Pb dating constrains the magmatic emplacement of basalts and rhyolites at 475±10Ma and 453±12Ma, respectively. The basalts are characterized by enriched Th and Sr, and depleted Nb, Ta and Ti. They have relatively high Th/Nb ratios between 0.9 and 1.3. Their εNd(T) values vary from -1.2 to +3.4. The chemical and isotopic compositions display a typical subduction-related signature, and they suggest that an enriched component with the isotopic composition of EMII might have contributed to the generation of the Baiyin basalts. The basalts were likely formed in a mature island-arc or a volcanic arc built on comparatively young or thin continental crust in an active continental margin. The rhyoIites have low concentrations of LILE compared to the basalts. They do not seen to have a relationship with the basalts, because of their significantly higher εNd(T) values (+4.3~+7.7). The high and positive εNd(T) values also rule out their derivation from anatexis of the continental crust. A modeling study suggests that the source.of the Zhe-Huo and Xiaotieshan rhyolites is similar to boninite and IAT (island-arc tholeiite), and hence indicating an intra-oceanic arc environment. (2) The formation of the Shangliugou volcanic rocks from .Qilian area is also related to subduction. The basaltic andesite have low TiO_2(0.45~0.63%) and P_2O_5(0.04~0.09) content, and high Th/Nb ratios (0.3~0.6). They show flat REE patterns. Their εNd(T) values vary in a narrow range from +4.8 to +6.4. The chemical and isotopic compositions indicate that they are derived from a slightly depleted mantle source and are fromed in intra-island arc setting. The rhyolites show calc-alkaline trend. They show enriched LREE and fiat HREE patterns with obvious negative Eu anomaly. They have high Th/Ta ratios (5.0 ~ 11.7) and large negative εNd(T) values (-2.6 ~ -8.4). The rhyolites are formed in active continental margin and result from a mixed process of two endmembers, or crust assimilation. (3) The metal elements of the volcanic-hosted massive sulfide deposit have two sources, the copper and zinc are derived from rhyolitic magmas whereas the lead are probably related to old sediments overlying the rhyolites. (4) It is suggested here that the volcanic rocks hosting massive sulfide deposit in the north Qilian orogen, which are previously considered as a bimodal suite of Neo-proterozoic to middle Cambrian age in a continental rift, are virtually related to subduction magmatism in Ordovician age, and there might have no continental rift magmatism of Neo-proterozoic to middle Cambrian in the north Qilian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The foreland basin on the northern margin of the lower reach of the Yangtze river (the lower Yangtze foreland basin) is tectonically situated in the basin-mountain transitional area along the southeastern flank of the Dabie mountains. The early formation and development of the basin is closely related to the open-up of the Mian-Lue paleo-oceanic basin on the southern margin of the Central Orogenic System represented by Qinling-Dabei orogenic belt, while the tectonic evolution of the middle-late stage of the basin is mainly related to development of the Mian-Lue tectonic zone that occurred on the basis of the previous Mian-Lue paleo-suture. The foreland basin of the northern rim of the lower reach of the Yangtze river was formed during the middle-Triassic collision between the Yangtze and North China plates and experienced an evolution of occuirence-development-extinction characterized by marine facies to continental facies and continental margin to intracontinent in terms of tectonic setting.The foreland basin (T2-J2) was developed on the basis of the passive continental marginal basin on the south side of the Mian-Lue paleo-ocean and superimposed by late Jurassic-Tertiary fault basin. The tectonic setting underwent a multiple transformation of rifting-collisional clososing-tensional faulting and depression, which resulted in changes of the property for the basin and the final formation of the superposed compose basin in a fashion of 3-story-building. According to the tectonic position and evolution stages of plate collision happening on the southeastern margin of the Dabie mountains, and tectono-tratigraphic features shown by the foreland basin in its main formational period, the evolution of the foreland basin can be divided into four stages: 1) pre-orogenic passive margin (P2-Ti). As the Mian-Lue ocean commenced subduction in the late-Permian, the approaching of the Yangtze and North China plates to each other led to long-periodical and large-scale marine regression in early Triassic which was 22 Ma earlier than the global one and generated I-type mixed strata of the clastic rocks and carbonate, and I-type carbonate platform. These represent the passive stratigraphy formed before formation of the foreland basin. 2) Foreland basin on continental margin during main orogenic episode (T2.3). The stage includes the sub-stage of marine foreland basin (T2X remain basin), which formed I-type stratigrphy of carbonate tidal flat-lagoon, the sub-stage of marine-continental transition-molasse showing II-type stratigraphy of marine-continental facies lake - continental facies lake. 3) Intracontinental foreland basin during intracontinental orogeny (Ji-2)- It is characterized by continental facies coal-bearing molasses. 4) Tensional fault and depression during post-orogeny (J3-E). It formed tectono-stratigraphy post formation of the foreland basin, marking the end of the foreland evolution. Fold-thrust deformation of the lower Yangtze foreland basin mainly happened in late middle-Jurassic, forming ramp structures along the Yangtze river that display thrusting, with deformation strength weakening toward the river from both the Dabie mountains and the Jiangnan rise. This exhibits as three zones in a pattern of thick-skinned structure involved the basement of the orogenic belt to decollement thin-skinned structure of fold-thrust from north to south: thrust zone of foreland basin on northern rim of the lower reach of the Yangtze river, foreland basin zone and Jiannan compose uplift zone. Due to the superposed tensional deformation on the earlier compressional deformation, the structural geometric stratification has occurred vertically: the upper part exhibits late tensional deformation, the middle portion is characterized by ramp fault -fold deformation on the base of the Silurian decollement and weak deformation in the lower portion consisting of Silurian and Neo-Proterozoic separated by the two decollements. These portions constitutes a three-layered structural assemblage in a 3-D geometric model.From the succession of the lower reach of the Yangtze river and combined with characteristics of hydrocarbon-bearing rocks and oil-gas system, it can be seen that the succession of the continental facies foreland basin overlies the marine facies stratigraphy on the passive continental margin, which formed upper continental facies and lower marine facies hydrocarbon-bearing rock system and oil-gas forming system possessing the basic conditions for oil-gas occurrence. Among the conditions, the key for oil-gas accumulation is development and preservation of the marine hydrocarbon-bearing rocks underlying the foreland basin. The synthetic study that in the lower Yangtze foreland basin (including the Wangjiang-Qianshan basin), the generation-reservoir-cover association with the Permian marine facies hydrocarbon-bearing rocks as the critical portion can be a prospective oil-gas accumulation.Therefore, it should aim at the upper Paleozoic marine hydrocarbon-bearing rock system and oil-gas forming system in oil-gas evaluation and exploration. Also, fining excellent reservoir phase and well-preserved oil-gas accumulation units is extremely important for a breakthrough in oil-gas exploration.