61 resultados para Native starch
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Acetylated corn starches with different degrees of substitution (DS 0.85, DS 1.78, DS 2.89) were synthesized by the reaction of corn starch with acetic anhydride in the presence of acetic acid under varying reaction temperatures. The product was characterized by FTIR spectroscopy, H-1 NMR, X-ray diffraction and contact angle measurement. Acid-base titration and H-1 NMR methods were employed to determine the degree of substitution of product. FTIR spectroscopic analysis showed that the characteristic absorption intensities of esterified starch increased with increase in the degree of substitution, and the characterized peak of hydroxyl group almost disappeared in the spectrum of DS 2.89 acetylated starch. The detailed chemical microstructure of native starch and acetylated starch was confirmed by H-1 NMR, C-13 NMR and C-13-(1) H-1 COSY spectra.
Resumo:
Dodecenly succinic anhydride (DDSA) starches were prepared commercially by the base catalyzed reaction of DDSA in pre-emulsion with starch granular in aqueous slurry. The results indicated that the degree of substitution and reaction efficiency were 0.0256% and 42.7%, respectively, at the parameters for the preparation of DDSA starches in starch slurry 30%, DDSA/starch radio 10% (wt/wt), pH 8.5-9.0, reaction temperature 313 K. After modification, product surface chemical composite had been changed which was prone to migrate into less polar solution. The chemical structural characteristics were investigated by methods of FTIR and H-1 NMR. The results of X-ray diffraction showed the native A-type crystalline pattern, indicating that reaction of corn starch with DDSA caused no change in the crystalline structure. Compared to native starch, the hydrophobic performance of esters was greatly increased. With the DS increasing, contact angles were gradually increased, however, the adhesion works were decreased. The maximum contact angle of DDSA starch could attend to 123 degrees, and the corresponding adhesion work was 33.2 mJ m(-2).