10 resultados para Native plants for cultivation -- Nutrition
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.
Resumo:
Goal, Scope and Background. As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. Methods. The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. Results and Discussion. Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. Conclusions. There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. Recommendations and Outlook. To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.
Resumo:
本研究应用微波消解ICP-AES 法对62 个小麦品种及3 个地区土壤的锌铁硒含量进行了分析测定,发现不同小麦品种中微量元素含量差异很大,姊妹系间也存在差异。含铁量最高与最低的小麦品种铁含量相差29.68mg/kg。含锌量最高与最低的小麦品种锌含量相差46.70 mg/kg。含硒量最高与最低的小麦品种硒含量相差0.056 mg/kg。对不同地点的小麦及土壤中锌铁硒含量进行方差分析,发现双流和西昌两地种植小麦的铁含量和硒含量均有显著差异,西昌和荣县种植的锌含量有显著差异。在3 个地点中双流种植小麦硒含量最高,西昌种植小麦的铁和锌含量最高。 通过对小麦微量元素含量与土壤中微量元素含量进行了相关性分析,结果表明:小麦中的锌铁含量与土壤中的锌铁含量呈显著正相关,土壤中铁与锌含量呈极显著正相关,小麦中铁与锌含量也呈极显著正相关。随着土壤微量元素锌铁的提高,小麦中的锌铁元素含量同时提高,而且小麦对两种元素的吸收互相促进。土壤中的硒含量与锌铁含量呈负相关。小麦中硒含量也与锌铁含量也呈负相关。说明锌和铁与硒互相拮抗。小麦硒含量与土壤硒含量呈正相关,但不显著。表明土壤硒含量可以影响小麦硒含量,但不是决定因素,小麦硒含量与小麦自身因素有关。 对姊妹系G290(高硒含量)和G289(低硒含量)进行抗重金属胁迫和抗旱性实验发现,高硒品种G290的抗逆性优于低硒品种G289。 利用RAPD 技术对7 个姊妹系进行遗传差异分析发现,高硒材料G290出现了特异条带,分别标为1、2、3、4,其他姊妹系品种中未发现特异条带,回收4 条特异条带并连接转化,得到目的片段1、2、3 的重组子,进行测序。NCBI 中结果显示没有找到植物中的同源序列,说明特异序列可能是未发现的基因片段,推测可能与小麦硒含量有关,有待进一步研究。 以上研究结果,对小麦营养研究及功能性小麦的筛选和栽培具有指导作用。 In this study, we determinated the contents of zinc, iron, selenium in 62 wheat cultivars and soil samples of three regions by method of microwave digestion/ ICPAES,found that there was great difference of zinc, iron, selenium contents in different wheat cultivars as well as different sister lines. Iron content difference was 29.68 mg/kg between the highest-iron-content cultivar and the lowest one, and zinc content difference was 46.70 mg/kg , selenium content difference was 0.056 mg/kg. Anova analysis was made on contents of zinc, iron, selenium in wheat and soil samples of different locations, significant differences of Fe and Se contents were found between wheat in Shuangliu and Xichang, significant difference of Zn content was found between wheat in Xichang and Rongxian. Se content in wheat of Shuangliu was highest, Fe and Zn contents in wheat of Xichang were highest. Relativity analysis was made on three trace elements in Wheat and in soil, the result showed that there was significant positive correlation of zinc, iron content between in Wheat and in soil, as well as between Fe and Zn both in wheat and in soil. With the improving of Zn, Fe contents in soil, contents of Zn and Fe in wheat increased and absorption of Zn and Fe in wheat will mutual promote. Negative correlation of Se and Zn contents was found in wheat and soil, but not significant, that meant the antagonism of Se and Zn. Positive correlation of Se content in wheat and soil was found. High selenium content G290 and low selenium content G289 in sister lines were selected for heavy metal stress and drought resistance experiments, the result showed that the resistance of high-selenium-content cultivar was better than low selenium one. Analysis on genetic difference was made by RAPD, and specific bands were selected, marked 1,2,3,4, no more specific bands were found in other sister lines.4 bands were recovered, ligated to T-vector and transformed E.coli. Three recombinant plasmids were obtained and sequenced. NCBI Blast showed there was no homology with other plants. It implied that these fragments probably be new genes and maybe were related to selenium in wheat. It needs further research. This paper would be useful for the study of wheat nutrition as well as selection and cultivation of functional wheat.
Resumo:
The reuse of holdfasts for regeneration of young seedlings or using wild juvenile plants as the seedling source has played the major role in commercial cultivation of the brown alga Hizikia fusiformis in East Asia over the past 20 years. The possibility of employing zygote-derived germlings for producing seedlings has been discussed in the literature, but has not yet become a reality. Three main obstacles have limited the use of zygotes as a main source of seedlings, (1) the dioecious nature of the algal life cycle which may lead to asynchronous male and female receptacle development and thus different timing of egg and spermatozoa expulsion, (2) the low attachment rate when using zygote-derived germlings with developed rhizoids from wild parental plants for seeding production, and (3) the problem of culturing young germlings in regions where water temperature is high in summer. In this investigation, shifting the timing of receptacle formation earlier than in nature was performed by tumbling the algae in a long-day tank (16-h light per day). Synchronization of egg and spermatozoa expulsion and thereafter fertilization were conducted in indoor tanks. Receptacle formation in constant long days could be shifted by 20 days earlier than in plants cultured on long lines in the open sea, or I month earlier than in plants growing on intertidal rocks. Synchronized expulsion of eggs and spermatozoon led to a high rate of fertilization. This was achieved by tumbling the male and female receptacle-bearing branchlets in the same tank at low density in high irradiance. In two independent trials, a total of 1,400,000 zygote-derived germlings were obtained from 620 g (fresh weight) female sporophytes. The germlings shed from the receptacles were at an identical developmental stage indicating high synchronization of expulsion of eggs and spermatozoon followed by fertilization. Approximately 63% ( +/-9.6%) of the germlings were shed from the receptacle between 16 and 24 It after fertilization and 20% ( +/-11.9%) remained on the receptacle for 3 days after fertilization. Germlings were seeded on string collectors before rhizoids started to elongate and the attachment efficiency was enhanced. Young seedlings reached 800 ( +/-50) mum in length in 25 days at 25 degreesC before they were transferred to open sea cultivation. These results provide the basis of a practical way of seedling production by use of zygote-derived germlings in the commercial cultivation of Hizikia fusiformis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Commercial farming of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura in China and South Korea in the sea depends on three sources of seedlings: holdfast-derived regenerated seedlings, young plants from wild population and zygote-derived seedlings. Like many successfully farmed seaweed species, the sustainable development of Hizikia farming will rely on a stable supply of artificial seedlings via sexual reproduction under controlled conditions. However, the high rate of detachment of seedlings after transfer to open sea is one of the main obstacles, and has limited large-scale application of zygote-derived seedlings. To seek the optimal condition for growing seedlings on substratum in land-based tanks for avoidance of detachment in this investigation, young seedlings were grown in both outdoor tanks exposed directly to sunlight and in indoor raceway tanks in reduced, filtered sunlight. Results showed that young seedlings, immediately after fertilization, could withstand a daily fluctuation of direct solar irradiance up to a level of 1800 mu mol photons m(-1)s(-1), and maintained a faster growth rate than seedlings grown in indoor tanks. Detailed experiments by use of chlorophyll fluorescence measurements further demonstrated that the overnight (12 h) recovery of optimal fluorescence quantum yield (F-v/F-m) of seedlings after 1 h treatment at 40 degrees C was 98%, and the 48 h recovery of F-v/F-m of seedlings after 1 h exposure to 1800 mu mol m(-2)s(-1) was 92%. Forty-one-day-old seedlings showed no significant decrease of optimal fluorescence quantum yield at salinity ranging from 30 to 5 ppt for a treatment up to 17 h. Six-hour desiccation treatment did not have any influence on the optimal fluorescence quantum yield. Exposure to 18 mmol L-1 sodium hypochlorite for 10 min did not damage the PSII efficiency, and thus could be used to remove epiphytic algae. The strong tolerance of young seedlings to high temperature, high irradiance, low salinity and desiccation found in this investigation supports the view that mass production of Hizikia seedlings should be performed in ambient light and temperature instead of in shaded greenhouse tanks.
Resumo:
Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.