4 resultados para National Arboretum (U.S.)--Maps.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For an orthotropic laminate, an equivalent system with doubly cyclic periodicity is introduced. Then a 3-dimensional finite element model for the equivalent system is transformed into the unitary space, where the large finite element matrix equation is decoupled into some small matrix equations. Such a decoupling very efficiently reduces the computational effort. For an orthotropic laminate with four clamped edges, no exact elasticity solution is available, and the deflection values predicted by different methods have a considerable difference each other for a small length-to-thickness ratio. The present predictions are the largest because the present method is a full 3-dimensional finite element analysis without superfluous constraints. Illustrative numerical examples are presented to observe the distributions of stresses through the thickness of the laminates. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of the dinuclear system (DNS) model, production cross sections of new superheavy nuclei with charged numbers Z=108-114 are analyzed systematically. Possible combinations based on the actinide nuclides U-238, Pu-244, and Cm-248,Cm-250 with the optimal excitation energies and evaporation channels are pointed out to synthesize new isotopes that lie between the nuclides produced in the cold fusion reactions and the Ca-48-induced fusion reactions experimentally, which are feasible to be constructed experimentally. It is found that the production cross sections of superheavy nuclei decrease drastically with the charged numbers of compound nuclei. Larger mass asymmetries of the entrance channels enhance the cross sections in 2n-5n channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thick natural uranium target was bombarded with a 60 MeV/u O-18 beam. The neutron-rich isotope Ra-230 as the target residue was produced through the multinucleon transfer reaction (U-238-4p-4n). The barium and radium fraction as BaCl2 precipitate were radiochemically separated first from the mixture of uranium and reaction products. Then, the radium fraction was separated from BaCl2 precipitate by using cation exchange technique. The gamma-ray spectra of the Ra fraction were measured using an HPGe detector. The production cross sections of Ra-230 were obtained by a combination of the radiochemical separation technique and off-line gamma-ray spectroscopy. The cross section of Ra-230 has been determined to be 66 +/- 20 mu b.