40 resultados para Nanocrystal

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanocrystal surface layer of an aluminum alloy induced by High Speed Shot Peening (HSSP) was investigated in this paper. The results of nanoindentation experiment show that the elastic modulus and the hardness of nanocrystal surface layer increased,by 8% and 20%, respectively. The elastic modulus and the hardness appear to be independent of the distance from nanocrystalized surface and the process time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y4Al2O9:EU3+ phosphor was synthesized through a sol-gel combustion method. The Y4Al2O9 phase can form through sintering at 800 degrees C. This temperature is much lower than that required via the solid state reaction method. The average grain size of the phosphor was about 30 run. Compared with the amorphous phosphor, the charge transfer band of crystalline phosphor shows a blue shift. The emission Of Y4Al2O9:Eu3+ indicates the existence of two luminescent centers, in agreement with the crystal structure of Y4Al2O9. Higher doping concentration could be realized in Y4Al2O9 nanocrystal host lattice. This indicates that the sol-gel combustion synthesis method can increase emission intensity and quenching concentration due to a good distribution of EU3+ activators in Y4Al2O9 host. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO films prepared by the thermal oxidation of the ZnS films through thermal evaporation are reported. The as-deposited ZnS films have transformed to ZnO films completely at 400 degrees C. The 400-700 degrees C annealed films with a preferential c-axis (002) orientation have a hexagonal wurtzite structure. The band gap of ZnO films shifts towards longer wavelength with the increase of the annealing temperature. The relationship between the band gap energy of ZnO films and the grain size is discussed. The shift of the band gap energy can be ascribed to the quantum confinement effect in nanocrystal ZnO films. The photoluminescence spectra of ZnO films show a dominant ultraviolet emission and no deep level or trap state defect emission in the green region. It confirms the absence of interstitial zinc or oxygen vacancies in ZnO films. These results indicate that ZnO film prepared by this simple thermal oxidation method is a promising candidate for optoelectronic devices and UV laser. (c) 2005 Elsevier BN. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic model is developed with the goal of understanding and predicting the morphology evolution of nonocrystals in nonequilibrium growth conditions. The model is based on the assumption that under such conditions, different crystal planes have different kinetic parameters. This model focuses on the morphology-developing stage and is successfully related to the nucleation process and other crystal evolution mechanisms. It is believed to be a universal model and is applied to discuss the morphology evolution of CdSe nanocrystals, including the aspect ratio, injection I schemes, ligands effect and morphology distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous In2O3 nanocrystal clusters with high surface areas have been synthesized by a one-step solvent-thermal method at a relatively low temperature. On the basis of our experimental data and nanomaterial growth mechanism, a template-assistant dehydration accompanied by aggregation mechanism was proposed to explain their formation. Besides, the influence of the high-temperature treatment on their porous structure and optical properties were studied and compared by various technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanocrystals were synthesized through AOT/heptane/H2O reverse micelles. New stable reverse mikelles were obtained by adding an appropriate amount of acrylic. acid monomer, CdS nanocrystal-poly(acrylic acid) composites were synthesized by gamma-radiation with a reverse mi'celle route at room temperature. The US nanocrystals with narrow size distribution were, found to be dispersed homogeneously in the poly(acrylic acid) matrix. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries provide sequential twining mechanism, which results in fivefold deformation twins. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation twins and stacking faults have been observed in nanocrystal line Ni, for the first time under uniaxial tensile test conditions. These partial dislocation mediated deformation mechanisms are enhanced at cryogenic test temperatures. Our observations highlight the effects of deformation conditions, temperature in particular, on deformation mechanisms in nanograins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent Ni2+-doped beta-Ga2O3 glass-ceramics were synthesized. The nanocrystal phase in the glass-ceramics was identified to be beta-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass-ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 mu s at room temperature. The observed infrared emission could be attributed to the T-3 (2g) (F-3) -> (3)A (2g) (F-3) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent beta-Ga2O3 glass-ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Er3+:Yb3+ codoped tellurite-fluorophosphate (TFP) glass ceramic exhibits much stronger upconversion luminescence. The intensity of the 540 nm green light and 651 nm red light of the TFP glass ceramic is 120 times and 44 times stronger than that of the fluorophospahte (FP) glass, respectively. XRD analysis shows that the nanocrystal in TFP glass ceramic is SrTe5O11. TFP glass ceramic also displays much higher upconversion fluorescence lifetime and crystallization stability. The narrow and strong peak at 540 nm is very ideal for practical upconversion luminescence realization. This work is a new trial for exploring non-PbF2 involved nanocrystal upconversion glass ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics were fabricated. The precipitated nanocrystal phase in the glass ceramics was identified by X-ray diffraction and transmission electron microscope. Broadband near-infrared emission centered at 1220 nm with full width at half maximum of about 240 nm and lifetime of about 250 mu s was observed with 980 nm excitation. The longer wavelength emission compared with Ni2+-doped MgAl2O4 crystal was attributed to the low crystal field occupied by Ni2+ in the glass ceramics. The present Ni2+-doped transparent glass ceramics may have potential applications in broadband optical amplifiers. (c) 2007 Elsevier B.V. All rights reserved.