9 resultados para NONPARAMETRIC-INFERENCE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
< p > The past population dynamics of four domestic and one wild species of bovine were estimated using Bayesian skyline plots, a coalescent Markov chain Monte Carlo method that does not require an assumed parametric model of demographic history. Four dom
Resumo:
The complete internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA, and ITS2 region of the ribosomal DNA from 60 specimens belonging to two closely related bucephalid digeneans (Dollfustrema vaneyi and Dollfustrema hefeiensis) from different localities, hosts, and microhabitat sites were cloned to examine the level of sequence variation and the taxonomic levels to show utility in species identification and phylogeny estimation. Our data show that these molecular markers can help to discriminate the two species, which are morphologically very close and difficult to separate by classical methods. We found 21 haplotypes defined by 44 polymorphic positions in 38 individuals of D. vaneyi, and 16 haplotypes defined by 43 polymorphic positions in 22 individuals of D. hefeiensis. There is no shared haplotypes between the two species. Haplotype rather than nucleotide diversity is similar between the two species. Phylogenetic analyses reveal two robustly supported clades, one corresponding to D. vaneyi and the other corresponding to D. hefeiensis. However, the population structures between the two species seem to be incongruent and show no geographic and host-specific structure among them, further indicating that the two species may have had a more complex evolutionary history than expected.
Resumo:
IEECAS SKLLQG
Resumo:
Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.